Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Oligodendroglioma"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Reclassification of Mixed Oligoastrocytic Tumors Using a Genetically Integrated Diagnostic Approach
Seong-Ik Kim, Yujin Lee, Jae-Kyung Won, Chul-Kee Park, Seung Hong Choi, Sung-Hye Park
J Pathol Transl Med. 2018;52(1):28-36.   Published online September 29, 2017
DOI: https://doi.org/10.4132/jptm.2017.09.25
  • 8,263 View
  • 231 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Background
Mixed gliomas, such as oligoastrocytomas (OA), anaplastic oligoastrocytomas, and glioblastomas (GBMs) with an oligodendroglial component (GBMO) are defined as tumors composed of a mixture of two distinct neoplastic cell types, astrocytic and oligodendroglial. Recently, mutations ATRX and TP53, and codeletion of 1p/19q are shown to be genetic hallmarks of astrocytic and oligodendroglial tumors, respectively. Subsequent molecular analyses of mixed gliomas preferred the reclassification to either oligodendroglioma or astrocytoma. This study was designed to apply genetically integrated diagnostic criteria to mixed gliomas and determine usefulness and prognostic value of new classification in Korean patients.
Methods
Fifty-eight cases of mixed OAs and GBMOs were retrieved from the pathology archives of Seoul National University Hospital from 2004 to 2015. Reclassification was performed according to genetic and immunohistochemical properties. Clinicopathological characteristics of each subgroup were evaluated. Overall survival was assessed and compared between subgroups.
Results
We could reclassify all mixed OAs and GBMOs into either astrocytic or oligodendroglial tumors. Notably, 29 GBMOs could be reclassified into 11 cases of GBM, IDH-mutant, 16 cases of GBM, IDH-wildtype, and two cases of anaplastic oligodendroglioma, IDH mutant. Overall survival was significantly different among these new groups (p<.001). Overall survival and progression-free survival were statistically better in gliomas with IDH mutation, ATRX mutation, no microscopic necrosis, and young patient age (cut off, 45 years old).
Conclusions
Our results strongly suggest that a genetically integrated diagnosis of glioma better reflects prognosis than former morphology-based methods.

Citations

Citations to this article as recorded by  
  • SNUH methylation classifier for CNS tumors
    Kwanghoon Lee, Jaemin Jeon, Jin Woo Park, Suwan Yu, Jae-Kyung Won, Kwangsoo Kim, Chul-Kee Park, Sung-Hye Park
    Clinical Epigenetics.2025;[Epub]     CrossRef
  • The prognostic significance of p16 expression pattern in diffuse gliomas
    Jin Woo Park, Jeongwan Kang, Ka Young Lim, Hyunhee Kim, Seong-Ik Kim, Jae Kyung Won, Chul-Kee Park, Sung-Hye Park
    Journal of Pathology and Translational Medicine.2021; 55(2): 102.     CrossRef
  • Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach
    Anna Latysheva, Kyrre Eeg Emblem, Petter Brandal, Einar Osland Vik-Mo, Jens Pahnke, Kjetil Røysland, John K. Hald, Andrés Server
    Neuroradiology.2019; 61(5): 545.     CrossRef
Case Report
Gliosarcoma with Components of Anaplastic Oligodendroglioma and Unclassifiable Spindle Cells: A Case Report.
Jung Woo Choi, Youngseok Lee, Jung Suk An, Nam Hee Won, Yong Gu Chung, Yang Seok Chae
Korean J Pathol. 2008;42(1):45-49.
  • 1,908 View
  • 19 Download
AbstractAbstract PDF
Gliosarcoma is a distinct disease entity that is characterized by a biphasic tissue pattern with alternating areas displaying glial and mesenchymal differentiation. The tumor in our case was a rare morphologic variant of gliosarcoma with components of anaplastic oligodendroglioma and unclassifiable spindle cells. Spindle cells showed CD34 and S-100 protein immunoreactivity, which was possibly related to peripheral nerve sheath differentiation. This unique feature has not been described previously and so this case expands the spectrum of possible divergent mesenchymal differentiation, and it lends support to pluripotential stem cells being the origin of this tumor.
Original Article
Adequate Microsatellite Markers for 1p/19q Loss of Heterozygosity of Oligodendroglial Tumors in Korean Patients.
Se Hoon Kim, Hoguen Kim, Tai Seung Kim
Korean J Pathol. 2005;39(1):23-33.
  • 1,964 View
  • 39 Download
AbstractAbstract PDF
BACKGROUND
It is well known that oligodendrogliomas can be divided into two groups according to the 1p/19q or 1p loss of heterozygosity (LOH) status because oligodendrogliomas with the 1p/19q LOH or the 1p LOH have a better prognosis and chemosensitivity. In this study, we investigated the adequate microsatellite markers for 1p/19q LOH of oligodendroglial tumors in Korean patients.
METHODS
We performed PCR that was based on the LOH test with the 1p (D1S508, D1S199, D1S2734, D1S186 & D1S312) and 19q (D19S219, D19S112, D19S412 & D19S596) microsatellite markers; these were the markers that were recommended by other researchers. We performed this PCR on microdissected paraffin embedded tissue blocks of 67 tumors from 56 cases.
RESULTS
The PCR based LOH analysis revealed that 3 microsatellite markers (D1S508, D1S2734 & D1S186) of 1p and 2 markers (D19S219 & D19S412) of 19q had higher heterozygosity scores than other markers. In addition, chromosomal LOH status using these selective markers showed a statistically significant difference of prognosis for oligodendroglial tumors.
CONCLUSIONS
We can suggest that the microsatellite markers with high heterozygosity scores (D1S508, D1S2734, D1S186, D19S219 and D19S412) would be adequate microsatellite markers for a PCR based LOH test of oligodendroglial tumors in Korean patients.

J Pathol Transl Med : Journal of Pathology and Translational Medicine
TOP