| Home | E-Submission | Sitemap | Contact Us |  
top_img
JPTM > Volume 45(3); 2011 > Article
The Korean Journal of Pathology 2011;45(3): 271-275.
doi: https://doi.org/10.4132/KoreanJPathol.2011.45.3.271
Copy Number Alterations of BCAS1 in Squamous Cell Carcinomas.
Yu Im Kim, Ahwon Lee, Jennifer Kim, Bum Hee Lee, Sung Hak Lee, Suk Woo Nam, Sug Hyung Lee, Won Sang Park, Nam Jin Yoo, Jung Young Lee, Sang Ho Kim, Su Young Kim
1Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea. suyoung.dr@gmail.com
2Department of Hospital Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea.
ABSTRACT
BACKGROUND: Breast carcinoma amplified sequence 1 (BCAS1), located in 20q13, is amplified and overexpressed in breast cancers. Even though BCAS1 is expected to be an oncogene candidate, its contribution to tumorigenesis and copy number status in other malignancies is not reported. To elucidate the role of BCAS1 in squamous cell carcinomas, we investigated the copy number status and expression level of BCAS1 in several squamous cell carcinoma cell lines, normal keratinocytes and primary tumors. METHODS: We quantitated BCAS1 gene by real-time polymerase chain reaction (PCR). Expression level of BCAS1 was measured by real-time reverse transcription-PCR and immunoblot. RESULTS: Seven (88%) of 8 squamous cell carcinoma cell lines showed copy number gain of BCAS1 with various degrees. BCAS1 gene in primary tumors (73%) also showed copy number gain. However, expression level did not show a linear correlation with copy number changes. CONCLUSIONS: We identified copy number gain of BCAS1 in squamous cell carcinomas. Due to lack of linear correlation between copy numbers of BCAS1 and its expression level, we could not confirm that the overexpression of BCAS1 is a common finding in squamous cell carcinoma cell lines. However, this study shows that the copy number gain of BCAS1 is a common finding in squamous cell carcinomas.
Key Words: Gene dosage; DNA copy number variations; BCAS1 protein, human; Gene expression; Carcinoma, squamous cell