White Matter Injury of Prematurity: Its Mechanisms and Clinical Features
The Journal of Pathology and Translational Medicine is an open venue for the rapid publication of major advancements in various fields of pathology, cytopathology, and biomedical and translational research. The Journal aims to share new insights into the molecular and cellular mechanisms of human diseases and to report major advances in both experimental and clinical medicine, with a particular emphasis on translational research. The investigations of human cell biology using high-dimensional biology techniques such as genomics and proteomics will be given a high priority. Articles on stem cell biology are also welcome. The categories of manuscript include original articles, review and perspective articles, case studies, Brief case reports, and letters to the editor.

Subscription Information
To subscribe to this journal, please contact the Korean Society of Pathologists/the Korean Society for Cytopathology. Full text PDFs are also available at the official website (http://jpatholtm.org). Journal of Pathology and Translational Medicine is indexed by Emerging Sources Citation Index (ESCI), PubMed, PubMed Central, Scopus, KoreaMed, KIOC, WPRIM, Directory of Open Access Journals (DOAJ), and CrossRef. Circulation number per issue is 700.

Editors-in-Chief
Hong, Soon Won, MD (Dong-A University, Korea)
Kim, Chong Ja, MD (Chungnam National University, Korea)

Associate Editors
Jeong, Jin Sook (Seoul National University, Korea)
Han, Jee Young (Gachon University, Korea)
Ha, Seung Yeon (Chonnam National University, Korea)
Choi, Young Duk (University of Ulsan, Korea)
Choi, Young Jin (University of Ulsan, Korea)
Bae, Young Kyung (University of Ulsan, Korea)

Editorial Board
Kim, Aune (Korea University, Korea)
Kim, Jong Hae (Yonsei University, Korea)
Kim, Jong Ho (Sungkyunkwan University, Korea)
Kim, Se Hyun (Seoul National University, Korea)
Kim, Soo Jong (Sungkyunkwan University, Korea)
Kim, Youn Wha (Korea University, Korea)
Kim, Woong Ji (Chonnam National University, Korea)
Kim, Woo Ho (Aichi Cancer Center, Japan)
Kim, Yoon Kyoung (Seoul National University, Korea)
Kim, Kyu Rae (Soonchunhyang University, Korea)
Kim, Kyoung Mee (National Health Insurance Service Ilsan Hospital, Korea)
Kim, Jung Ho (Seoul National University, Korea)
Kim, Hee Jung (University of Ulsan, Korea)
Kim, Haeryoung (Korea University, Korea)
Kim, Do Young (Chungnam National University, Korea)
Kim, Sun Och (Sungkyunkwan University, Korea)
Kim, Jung Ho (Ahn Myoung Gook University, Korea)
Kim, Kyung-Il (University of Ulsan, Korea)
Kim, Kyoung Hyun (Chosun University, Korea)
Ngo, Quoc Dat (National University of Singapore, Singapore)

Statistics Editors
Kim, Dong Wook (National Health Insurance Service Ilsan Hospital, Korea)
Lee, Byun Sun (Seoul National University, Korea)

Manuscript Editor
Chang, Sun Hye (UpLabs Co., Korea)

Contact the Korean Society of Pathologists/the Korean Society for Cytopathology
Publisher: Han, Soon Won, MD, Han Young Youn, MD
Editors-in-Chief: Soon Won Hong, MD, Chong Ja Kim, MD
Published by the Korean Society of Pathologists/the Korean Society for Cytopathology

Front cover image: Pathologic and immunohistochemical features of intramuscular hibernoma (Figs. 2 and 3). p502-503.

© 2017 by the Korean Society of Pathologists/the Korean Society for Cytopathology
The journal is supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government.
CONTENTS

REVIEW
449 White Matter Injury of Prematurity: Its Mechanisms and Clinical Features
 Young Ah Lee

ORIGINAL ARTICLES
456 The Potential Roles of MELF-Pattern, Microvessel Density, and VEGF Expression in Survival of Patients with Endometrioid Endometrial Carcinoma: A Morphometrical and Immunohistochemical Analysis of 100 Cases
 Dmitry Aleksandrovich Zinovkin, Md Zahidul Islam Pranjol, Daniil Rudolfovich Petrenyov, Eldar Arkadievich Nadyrov, Oleg Gennadievich Savchenko

463 The Intraoperative Immunohistochemical Staining of CD56 and CK19 Improves Surgical Decision for Thyroid Follicular Lesions
 Ju Yeon Pyo, Sung-eun Choi, Eunah Shin, JaSeung Koo, SoonWon Hong

471 Diverse Immunoprofile of Ductal Adenocarcinoma of the Prostate with an Emphasis on the Prognostic Factors
 Se Un Jeong, Anuja Kashikar Kekatpure, Ja-Min Park, Minkyu Han, Hee Sang Hwang, Hui Jeong Jeong, Heounjeong Go, Yong Mee Cho

482 Acid-Fastness of Histoplasma in Surgical Pathology Practice
 Madhu Rajeshwari, Immaculata Xess, Mehar Chand Sharma, Deepali Jain

488 Placental Lesions in Meconium Aspiration Syndrome
 Binnari Kim, Soo-young Oh, Jung-Sun Kim

499 Intraosseous Hibernoma: A Rare and Unique Intraosseous Lesion
 Boram Song, Hye Jin Ryu, Cheol Lee, Kyung Chul Moon

CASE REPORTS
505 A Rare Case of Aggressive Melanotic Schwannoma Occurred in Spinal Nerve of a 59-Year-Old Male
 Sung-eun Choi, Yoon Jin Cha, Jisup Kim, Hyunseo Cha, Jayeong Seo, Sung-Uk Kuh, Sung-Jun Kim, Se Hoon Kim

Cytologic Characteristics of Thymic Adenocarcinoma with Enteric Differentiation: A Study of Four Fine-Needle Aspiration Specimens
Ah-Young Kwon, Joungho Han, Hae-yon Cho, Seokhwi Kim, Heejin Bang, Jiyeon Hyeon

Iatrogenic Gastric Pseudolipomatosis during Endoscopic Submucosal Dissection
Sang Wook Kim, Woo Sung Moon

Instructions for Authors for Journal of Pathology and Translational Medicine are available at http://jpatholtm.org/authors/authors.php
Injuries to the brain can be fatal or lead to catastrophic events regardless of the age of patients, and brain injuries of newborns can be coupled with lifelong intellectual or motor deficits as in cerebral palsy.1,2 Hypoxia-ischemia (H-I) has long been considered one of the major mechanisms of perinatal brain injuries,3 and the term hypoxic ischemic encephalopathy (HIE) has been widely used.4 HIE is defined as an acute encephalopathy caused by intrapartum or late antepartum brain hypoxia and ischemia mostly in term babies.5 In HIE, compromised oxygen and glucose supply to the brain cells leads to cellular energy failure,6,7 and a large body of evidence indicates a clear association between HIE and neurodevelopmental problems in surviving infants.8

Fetal development is a dynamic process, and the changes in the anatomical constitution and the physiological maturation of the central nervous system with progression of gestation account for the differences between the brain injury patterns of full-term neonates and those of premature neonates.9 While term newborns with HIE predominantly show diffuse disease, cerebral-deep nuclear disease with prominent involvement of cerebral neocortex, hippocampus, and basal ganglia-thalamus, and deep nuclear-brainstem disease,10 cerebral white matter is chiefly involved in preterm newborns with HIE.9,11 This difference in brain injury patterns should be closely related to fetal brain development, as the organization and myelination of fetal brain begin after 6 months of gestation. Myelination of neuronal axons increases conduction speed, and oligodendrocytes are responsible for myelin synthesis in the central nervous system. Oligodendrocytes progenitor cells are formed in the ventricular zone after approximately 20 weeks of gestation, and these cells are vulnerable to oxidative stress. As preterm newborns before 30 weeks of gestation are with deficient myelination, white matter injury of the brain is a main form of brain injury in preterm babies.12-15

Diverse pregnancy disorders are associated with preterm birth, which refers to birth before 37 gestational weeks. Spontaneous preterm births are the results of premature labor or preterm premature rupture of membranes, and medically indicated preterm birth is frequently associated with clinical situations where maternal or fetal well-being can be compromised without medical intervention, as in preeclampsia or fetal growth restriction.16 Premature babies are vulnerable to various perinatal morbidities, and the frequency of short- and long-term complications such as neonatal respiratory distress syndrome and cerebral palsy (CP)
is significantly increased. This review will summarize the current understanding of white matter injury in premature newborns with special reference to its prenatal components in pathology and clinical significance.

WHITE MATTER INJURY OF PREMATURITY

In immature brains of preterm babies, white matter injuries occur as germinal matrix hemorrhage–intraventricular hemorrhage (GMH-IVH), periventricular leukomalacia (PVL), and diffuse white matter injury. GMH-IVH is a consequence of venous bleeding from thin-walled vessels in the germinal matrix, which easily propagates into the ventricle because of the anatomical relationship with the ventricles. GMH-IVH can evolve into permanent lesions such as porencephalic cyst and hydrocephalus. On the other hand, PVL occurs due to inadequate arterial blood supply to deep white matter, which leads to hypoxia and ischemia in the regions involved (Fig. 1). At the cellular level, PVL is associated with pancellular necrosis and surrounding edema. In diffuse white matter injury, a prominent feature is the loss of oligodendroglia and subsequent decrease in axonal myelination.

CLINICAL FEATURES OF WHITE MATTER INJURY OF PREMATURITY

Several cohort studies have assessed the risk factors of preterm white matter injury. Herzog et al. examined the impact of putative risk factors of PVL besides prematurity in the Slovenian National Perinatal Information System data and reported that maternal obesity and acute chorioamnionitis increase the risk of PVL more than prematurity does. Gagliardi et al. analyzed a prospective singleton infant cohort (n = 2,085) between 23 and 31 weeks of gestational age born in six Italian regions (ACTION study). They looked at the relationships between pregnancy disorders associated with very preterm birth and neonatal outcomes. For the comparisons, the pregnancy disorders were divided into two categories: “disorders of placentation” (hypertensive disorders and fetal growth-restricted [FGR]) and “presumed infection/inflammation” (preterm labor and preterm prelabor rupture of membranes [PPROM]). The risk of mortality, bronchopulmonary dysplasia, and retinopathy of prematurity was higher in FGR infants, and the risk of intraventricular hemorrhage and PVL was lower than in newborns with infection/inflammation disorders when adjusted for gestational age.

An analysis of very preterm infants (n = 753) surviving at least 7 days demonstrated cystic PVL in 9.2%, and the incidence of PVL was highest (16%) in newborns at 28 weeks of gestation. Prenatal inflammation before delivery and the development of PVL showed a strong correlation, and the intrauterine infection and premature rupture of membranes in combination conferred a much higher risk (22%) of PVL. On the other hand, chronic fetal distress such as fetal growth retardation and preeclampsia was seldom followed by PVL (< 2% risk). Another case-control study that analyzed preterm infants with PVL (n = 95) and controls (n = 245) showed an association between PVL and PPROM, gestational age at PPROM, prolonged rupture of membranes (p < .0001), administration of tocolytics, and antibiotics. In contrast, preeclampsia, hypertension, FGR, abnormal umbilical artery Doppler, and cesarean delivery in the absence of labor were less frequent. In logistic regression analysis, however, many of these lost statistical significance, while birth weight turned out to be significant. The overall findings suggested that PPROM and prolonged rupture of the membranes affect the neurodevelopmental outcome of the preterm fetus.

RADIOLOGIC FINDINGS OF WHITE MATTER INJURY OF PREMATURITY

Ultrasonography

A developing fetal brain is rapidly changing during pregnancy. However, it is very challenging to monitor this important and rapidly changing fetal organ by conventional transabdominal ultrasonography. In this respect, transvaginal high-resolution
ultrasound (US) and three-dimensional (3D) US turned out to be very helpful in the assessment of 3D configuration of fetal brain. 3D US is effective in the prenatal assessment of fetal brain anomalies, vascular malformations, and acquired insults.26

US examination has been widely used in the detection of brain lesions in fetuses and newborns. According to a prospective study that examined the frequency of echodensities in the periventricular white matter, basal ganglia, and thalamus of 124 fetuses with risk of preterm birth, echodensities were found in 66% of the cases by transvaginal US examination. The gestational age window of the fetuses was between 26 and 34 weeks, and all mothers were with either hypertensive disorders of pregnancy or preterm labor. The most frequent region was the periventricular area (52%). At least 50% of the periventricular echodensities persisted after delivery. The study showed that echodensities in several areas of the brain are a relatively common finding in high-risk fetuses.27

Padilla-Gomes et al.28 compared the frequency of transient periventricular echodensities (TPE), PVL, and hemorrhagic brain lesions in FGR preterm babies and in appropriate-for-gestational-age (AGA) babies. The gestational age of the study population ranged between 24 and 34 weeks, and brain changes were assessed by US at day 3 (US-I), 2 weeks (US-II) after delivery, and term-equivalent age (US-III). They found a higher prevalence of TPE at US-I and PVL at US-II and US-III in FGR neonates. Based on the results, the investigators proposed that fetal growth restriction is associated with an increased prevalence of white matter damage (WMD) in US brain scans of preterm babies.28

A series of EPICPAGE cohort of French studies confirmed brain abnormalities in very preterm infants according to clinical parameters such as gestational age, plurality, and fetal growth restriction. Based on cranial US findings, the frequencies of WMD, major WMD, cystic PVL, periventricular hemorrhage, and intraventricular hemorrhage were 21%, 8%, 5%, 3%, and 3%, respectively. The risk of WMD showed an inverse relationship with gestational age, while the incidence of cystic PVL in FGR babies and in AGA babies did not differ.29 Based on the neonatal US findings, 17% of children with grade III intraventricular hemorrhage and a quarter of children with WMD developed cerebral palsy. In contrast, CP was found in only 4% of children with unremarkable US findings.30

Certain placental histopathological findings are associated with fetal and perinatal brain injuries, and brain US findings were shown to be associated with placental histopathological changes consistent with placental underperfusion or inflammation. A prospective analysis of fetuses (n = 77; gestational age, 26 to 34 weeks) demonstrated that moderate brain echogenicity changes such as periventricular echodensity grade IB and intraventricular echodensity grade II and III are found in cases with uteroplacental underperfusion and inflammation. In particular, placental lesions were present in all cases with grade IB periventricular echodensity.31

Magnetic resonance imaging

The whole fetal brain structure can also be observed by magnetic resonance imaging (MRI) in the second half of pregnancy.30 Acute chorioamnionitis is a histological surrogate of intrauterine infection and inflammation and is a component of fetal inflammatory response. This is more commonly found in preterm birth. Anblagan et al.32 examined placental histology and neonatal brain MRI data in a cohort of preterm babies (n = 90) using tract-based spatial statistics to compare fractional anisotropy (FA) data and computational morphometry analysis. The volumes of whole brain, tissue compartments, and cerebrospinal fluid were assessed to determine if acute chorioamnionitis is a risk factor for preterm brain injury. The study decreased FA in the genu, cingulum cingulate gyri, centrum semiovale, inferior longitudinal fasciculi, limbs of the internal capsule, external capsule, and cerebellum in cases with acute chorioamnionitis (p < .05, corrected). This suggests that prenatal white matter injury occurs in a substantial proportion of preterm infants.32

Banovic et al.33 analyzed the incidence of fetal brain injury by MRI in the cases of preterm labor, preterm prelabor rupture of the membranes, and FGR and compared fetal brain MRI with other antenatal monitoring tools such as US and biophysical profile. They looked at both immediate neonatal outcome and long-term neurodevelopmental handicap at 24 months in 70 cases. While no correlation was found between abnormal MRI and other surveillance tools or immediate neonatal outcome, binary logistic regression showed that fetal brain MRI is the most powerful indicator of long-term neurodevelopmental handicap.33

A review of prenatal MRI data by Doneda et al.34 also suggested that transient venous hypertension in utero is responsible for frontal PVL. The investigators looked for anomalies distributed in the deep medullary vein territory in 78 fetuses with unequivocal cerebral clastic lesions.34

Pathophysiology of white matter injury of prematurity

The major reasons for the predominant involvement of cerebral white matter in preterm babies are considered to be the vulnerability of premyelinating oligodendrocytes to reactive oxygen species and cerebral anatomical constitution. Preterm newborns have impaired autoregulation of cerebral blood flow, and there
are vascular end zones and border zones.\(^{35,36}\) Regarding the etiology of white matter injury of prematurity, accumulated evidence strongly indicates that there are two main pathways involved. One is the ischemic pathway, the other is the inflammatory pathway, and these two pathways can be synergistic.\(^{37-39}\) The incidence of hypoxic ischemic brain injuries is higher in fetuses exposed to maternal inflammation and infection.\(^{40,41}\)

Ischemic pathway

The ischemic pathway is mainly related to excitotoxicity and oxidative stress.\(^{42-44}\) Excitotoxicity is due to depolarization following energy failure of the cells. Depolarization leads to excessive glutamate discharge and calcium influx into the cells, as a result of which nitric oxide synthase is activated. Cellular injury is then induced by increased nitric oxide production. Reperfusion injury following H-I cycles imposes oxidative stress on the cells.\(^{45}\) Premyelinating oligodendrocytes are more susceptible to oxidative stress than fully myelinated oligodendrocytes are because they lack antioxidant enzymes such as superoxide dismutase and glutathione peroxidase.\(^{38,46}\)

Inflammatory pathway

A substantial role for inflammatory pathway related to infection and inflammation has been described. Several studies have shown that intra-amniotic infection and inflammation are causative factors of perinatal and long-term complications.\(^{47-49}\)

Antenatal versus postnatal origin of white matter injury of prematurity

While it is generally considered that perinatal brain injury is a consequence of intrapartum or postpartum events, there is substantial evidence that a certain proportion of brain injuries has antenatal components.\(^{42,43}\) An examination of 58 stillborn fetuses for the presence of GMH, pontosubicular necrosis (PSN), and PVL revealed at least one lesion in 40% of cases, clearly indicating that GMH and PVL can occur in utero. The investigators have also found evidence for the prenatal occurrence of GMH in some cases by US examination and pointed out that PVL and PSN can occur in utero as well.\(^{51}\) Nakamura et al.\(^{52}\) have confirmed cystic brain lesions in two autopsy cases. One was a donor fetus in twin-to-twin transfusion syndrome, and the other was a case of thanatophoric dwarfism. Chronic PVL was found in the second case. The findings observed in these cases imply that cerebral circulatory disturbance is a pathogenetic mechanism of in utero brain injuries.\(^{52}\)

Placental pathology in white matter injury of prematurity

Several studies have documented the importance of placental pathology in white matter injury of prematurity. Chang et al.\(^{53}\) looked at neuropathological findings in 37 third-trimester fetal deaths in conjunction with their placental lesions. There was a correlation between neuronal karyorrhexis or white matter gliosis and severe placental inflammation, and histologically proven PVL was found in two cases.\(^{31}\) An analysis of 167 preterm babies born between 23 and 34 weeks of gestation revealed a significant association between PVL and chronic deciduitis.\(^{54}\) In preterm infants, antepartum bleeding of placenta previa is a risk factor for PVL.\(^{55}\) When Wharton et al.\(^{56}\) performed a case-control study to examine the relationship between PVL and chorionamnionitis in very low-birth-weight infants, severe umbilical cord inflammation was found to be a risk factor of PVL. Kumazaki et al.\(^{57}\) reported massive retroplacental hemorrhage, extensive infarction, and severe perivillous fibrin deposition in preterm infants with ante- or peripartum PVL. The study findings suggest an association between poor placental perfusion and white matter injury of prematurity.

Experimental models

Experimental studies have been done to determine if in utero brain injuries are induced in animals. Regarding the consequences of fetal brain injury following in utero hypoxia and ischemia, studies have documented both pathological lesions of the brain and the derangement of motor function in rabbits akin to human CP.\(^{58,59}\) Brain lesions similar to human white matter injury have been easier to reproduce in gyrencephalic animals such as rabbits, dogs, and sheep than in rodents. White matter injuries in models of H-I pathway by hypoperfusion are characterized by more diffuse microglial response, while the experimental simulation of inflammatory pathway using lipopolysaccharide induces lesions with more prominent inflammatory cell infiltration.\(^{60}\) Rabbits have more traits that can be helpful in studies than other animal species do. Principally, their motor development occurs in the perinatal period, as is the case with humans.\(^{61}\)

Using a model of placental insufficiency, Buser et al.\(^{62}\) demonstrated selective patterns of gray and white matter injury after global H-I in fetal rabbits. Gray matter injury predominated following H-I at embryonic day 22 (E22), while white matter injury was minimal. They also observed that, following H-I at E25, there was an increased acute white matter injury instead. Consequently, white matter atrophy was detected at E29 in preterm rabbits after H-I at E25, while it was not detected following H-I at E22. As oligodendrocyte progenitors density increases
between E24 and E25 in rabbit forebrain, the investigators proposed that it explains the differences in susceptibility to gray and white matter injury and that this may be the case in white matter injury of preterm newborns.62

Derricket al.63 induced motor deficits in rabbit fetuses using a model of \textit{in utero} placental insufficiency that were akin to motor deficits in human CP in premature and term babies. Surviving preterm rabbit fetuses (67\%–70\% gestation) subjected to persistent global hypoxia had hypertonia and abnormal motor control. At postnatal day 1, the pups of hypoxic groups had impaired locomotion, motor reflex, sucking, and swallowing. Histological examination revealed acute injury to motor pathways in the subcortical region.64 In a following study, Derricket al.65 modeled sustained and repetitive \textit{in utero} H-I resembling placental abruption and labor in the pregnant rabbit. They showed that sustained H-I at E22 and at E25 induces fetal death and other deficits in the surviving animals. Magnetic resonance imaging (MRI) suggested that injury in the internal capsule white matter is responsible for a part of the hypertonia.66

The role of intrauterine infection in fetal brain injuries also has been examined in several animal models.64-66 Fieldet al.67 introduced \textit{Garderella vaginitis} into the pregnant rabbit uterus at E20 or E21 by hysteroscopy to see the effects of intrauterine infection on feto-maternal outcome. Both amnionitis and deciduitis were induced by \textit{G. vaginitis} inoculation, but maternal fever and preterm delivery surprisingly were not. In the fetuses, however, intrauterine infection with \textit{G. vaginitis} decreased the live birth rate, and the fetuses exposed to deciduitis had lower birth weight. In addition, the \textit{G. vaginitis}–inoculated study group had significantly higher frequency of serious brain injury than the control group (60\% vs 0\%). The study findings indicate that \textit{G. vaginitis} has more pathological impact in the rabbit fetus than in the mother.68 There is further experimental evidence that intrauterine infection leads to WMD \textit{in utero}. Yoonet al.68 introduced \textit{Escherichia coli} into the pregnant rabbit uterus from E20 to E21, maintained the pregnancy for additional 5 to 6 days by antibiotic treatment, and examined the brains of fetuses and the placentas. Histologically proven white matter pathology was found in 12 fetuses of 10 \textit{E. coli}–inoculated rabbits, but not in the control group (p < .05). All of the rabbits with white matter pathology were associated with intrauterine infection.69 Intrauterine endotoxin administration also induced microstructural changes in the white matter of rabbit newborns, which were detected by diffusion tensor MRI. Term newborn rabbits prenatally exposed to endotoxin at E28 showed decreased FA in periventricular white matter. Brain sections disclosed more frequent activated microglial cells, which may explain the change in diffusivity.69

\section*{CONCLUSION}

Despite the marked improvement in postnatal care during recent decades, there has been no great success in reducing the incidence of white matter injuries in preterm newborns. This indicates that the major targets for prevention of brain injuries are \textit{in utero} events especially in preterm newborns. In this review, I have summarized both the pathophysiological and clinical aspects of white matter injury of prematurity. To prevent and improve the clinical outcome of this potentially catastrophic event, more vigilant prenatal monitoring and further studies to find more powerful prenatal biomarkers of fetal brain white matter injury are urgent.

\section*{Conflicts of Interest}

No potential conflict of interest relevant to this article was reported.

\section*{Acknowledgments}

The author is very grateful to Ms. So Won Kim for her excellent assistance in manuscript preparation and editing.

\section*{REFERENCES}

7. Gilland E, Bona E, Hagleb H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunos-

The Potential Roles of MELF-Pattern, Microvessel Density, and VEGF Expression in Survival of Patients with Endometrioid Endometrial Carcinoma: A Morphometrical and Immunohistochemical Analysis of 100 Cases

Dmitry Aleksandrovich Zinovkin
Md Zahidul Islam Pranjol
Daniil Rudolfovich Petrenyov
Eldar Arkadievich Nadyrov
Oleg Gennadievich Savchenko

University Research Laboratory, Gomel State Medical University, Gomel, Belarus; 1University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, Devon, United Kingdom; 2Laboratory of Endocrinology and Biochemistry, Institute of Radiobiology National Academy of Sciences, Gomel; 3Laboratory of Clinical Research, Republican Research Center for Radiation Medicine and Human Ecology, Gomel; 4Department of Oncology, Gomel State Medical University, Gomel, Belarus

Background: In this study, we hypothesized that microcystic, elongated, fragmented (MELF)-pattern, vascular endothelial growth factor (VEGF) expression by cancer cells and microvessel density of cancer stroma may be associated with progression of endometrioid adenocarcinoma. Methods: The study used data from the Belarus Cancer Registry and archival histological material of 100 patients with retrospectively known good (survival) and poor (disease progression and death) outcomes. All cases were immunohistochemically stained for CD34 and VEGF. Two independent samples were compared for the characteristics of signs, and obtained results were analyzed by receiver operating characteristic analysis, Mann-Whitney U test, χ² test (Yates correction), and Mantel-Cox test. Multivariate Cox hazard analysis and Spearman correlation test were used. A p-value of less than .05 was considered statistically significant. Results: The observed survival rate of patients with endometrioid adenocarcinoma was significantly lower (p = .002) in MELF-pattern positive patients when compared with MELF-pattern negative patients. The overall survival rate of patients whose tumors had more than 114 vessels/mm² of tissue was significantly low (p < .001). Interestingly, a similar observation was found in patients with increased vessel area, evidenced by VEGF expression in the glandular tumor component. Conclusions: Our study suggests, for the first time, that these criteria may be used as risk factors of endometrioid adenocarcinoma progression during 5 years after radical surgical treatment. However, a large independent cohort of samples should be considered in the future to validate our findings.

Key Words: Carcinoma, endometrioid; Vascular endothelial growth factor; Prognosis; MELF; Vessel density

The stromal microenvironment of tumors is gradually becoming a main focus in the field of cancer research. It is believed that malignancy is a result of complex molecular and cellular interactions between the elements of tumor microenvironment and surrounding host tissues which induce selection and expansion of the neoplastic cells.1 In 2005, Zigrino et al.2 reported an interaction of tumor cells with the stromal elements during tumor progression and paid special attention to the ability of the neoplastic cells to modify stroma by changing the adjacent connective tissue and modulating cellular metabolism of the host. In such circumstances, a new stroma is formed in areas of tumor invasion, including the parts of distant metastases, creating favorable conditions for the aggressive potential of tumor cells. This event in the areas of active cancer cell invasion is common in tumor progression.2

Murray et al.3 introduced the acronym “MELF” (microcystic, elongated, fragmented) which describes the unusual changes incurred by the endometrioid adenocarcinoma (EA) when invading into the myometrium. These changes are characterized by the formation of microcysts lined with eosinophilic cytoplasm, elon-
gated glandular structures, and clusters of individual cells. Though earlier it was believed that this fibromyxoid stromal reaction was initially a degenerative process, a number of studies have shown that the MELF pattern can be a specific tumor stroma reaction, similar to the epithelial-mesenchymal interactions observed in other tumors.

Angiogenesis is defined by formation of new blood vessels from preexisting ones, playing a key role in uncontrolled proliferation of cells, survival of localized malignant cells and distant tumor invasion. Increased microvessel density, an indirect marker of intense tumor vascularization, is known to be associated with both evolution of the disease and patient survival. The formation of new vessels depends on the interaction between different hormones/growth factors and microvascular endothelial cells lining the existing microvessels. The endometrium expresses several growth factors involved in angiogenesis, including epidermal growth factor, transforming growth factor, and vascular endothelial growth factor (VEGF). VEGF is one of the most common promoters of angiogenesis, expressed even by the normal endometrium. As an angiogenetic factor, VEGF stimulates proliferation of endothelial cells and also increases vascular permeability and protein extravasations.

In this study, we hypothesized that MELF-pattern, VEGF expression by cancer cells, and microvessel density may be associated with the progression of EA and survival of patients. Therefore, we investigated the role of vessel and stroma of tumor microenvironment and reported for the first time that these criteria may be used as prognostic factors for EA of the uterine corpus.

MATERIALS AND METHODS

Ethical approval

The study was approved by the Committees for Medical and Health Sciences of Research Ethics of Republican Research Center for Radiation Medicine and Human Ecology and Gomel State Medical University. Dispensation from the requirement of patient consent was granted.

Patient characteristics

This retrospective study involved women with endometrial EA who were treated between January 2010 and December 2012 in the Grodno region, Republic of Belarus. The inclusion criteria for the study were stage I–III (International Federation of Gynecology and Obstetrics [FIGO], 2009), the presence of EA as the main cause of death, progression of the tumor, age between 45 and 80, hysterectomy, and an absence of malignant tumors in other parts of the body. The control subjects were selected cases of EA stage I–III with 5-year survival, age between 45 and 80, and no history of other malignant tumors. The exclusion criteria for the study were as follows: stage IV (FIGO, 2009), death from postoperative complications during the first month after hysterectomy, death from causes not related to EA progression, Lynch syndrome, synchronous and metachronous malignancies, and age less than 45 or more than 80.

A total of 100 out of 156 cases of EA during the study period were determined to be eligible for inclusion in the study. The power analysis demonstrated that the number of patients was sufficient to conduct further research. The study used data from the Belarus Cancer Registry and archival histological material of 100 patients with histopathological diagnosis of EA. Histologic typing was performed according to the histological classification of endometrial cancer by the World Health Organization. Patients were divided into two groups. The first group included 48 subjects who had recurrence or died of EA within 5 years after diagnosis (unfavorable outcome). The second group consisted of 52 subjects who had no recurrence or death within 5 years after diagnosis (favorable outcome). The average age in the group with favorable outcome was 62.7 ± 10.1 years and it was 65.2 ± 9.6 years in the group with an unfavorable outcome. Patient characteristics by FIGO stage and tumor grade are presented in Table 1.

Hematoxylin and eosin staining protocol

Five-micrometer-thick sections were prepared from the archival histological blocks. They were mounted on microscopic slides. Next, the sections were deparaffinized in two portions of xylene and rehydrated in descending concentrations of ethanol. Subsequently, they were stained with hematoxylin and eosin by standard methods. The sections were cleansed in carbolic xylene, dehydrated in ascending alcohol concentrations, dried and mounted under coverslips using Biomount medium (DAKO, Glostrup, Denmark).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unfavorable outcome group (n=48)</th>
<th>Favorable outcome group (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>II</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>G2</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>G3</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

FIGO, International Federation of Gynecology and Obstetrics.
Primary antibodies and detection system

Primary antibodies used in this study include the following: ready-to-use monoclonal rabbit anti-CD34 (clone EP88) and ready-to-use polyclonal rabbit anti-VEGF (Diagnostic Biosystems, Pleasanton, CA, USA). Mouse/Rabbit PolyVue Plus HRP/DAB Detection System (Diagnostic Biosystems) was used for primary antibodies visualization.

Immunohistochemical staining protocol

The 4–5-μm-thick sections of tissue on l-polylysine coated glass slides were deparaffinized and washed with distilled water for 3 minutes. Antigen retrieval was performed using antigen unmasking solutions Tris-EDTA buffer (1 mM, pH 9.0) and citrate buffer (1 mM, pH 6.0), with preheating in the microwave at 800 W for 5 minutes and at 600 W for 10 minutes, respectively. The sections were then allowed to cool in the same solution. Endogenous peroxidase blocking was performed in 5% hydrogen peroxide for 20 minutes, and blocking of nonspecific antibody binding was ensured by incubating the sections in 5% casein in Tris-buffered solution for 1 hour. Following a brief wash in Tris-buffered solution, the sections were incubated at room temperature for 2 hours with corresponding primary antibodies. Tissue sections were then incubated at room temperature for 30 minutes with anti-mouse horseradish peroxidase secondary antibodies. Between each step the sections were washed twice with Tris-buffered solution for 5 minutes each. The reaction product was visualized with 3.3'-diaminobenzidine staining for 5 minutes, followed by Mayer’s hematoxylin counter-staining.

Morphometry

Determination of tumor vessels of microvasculature was carried out in the field with the largest number of capillaries (hot spots). The number and the area of vessels per 1 mm² were determined by counting the number in 5 fields under the magnification of ×400. These results were converted to 1 mm² area of the tumor tissue. The microscope Nikon Eclipse 50i with digital camera DS-F1 and NIS-Elements software (Nikon, Tokyo, Japan) was used for this morphometric work.

Statistical analysis

All data were presented by the median, lower and upper quartiles. A two-tailed Fisher test was used to compare the groups according to the presence or absence of MELF-pattern. Mann-Whitney test and receiver operating characteristic (ROC)-analysis were used for comparing the study groups based on the evaluated criteria. Determining the confidence interval (CI) and the area under the ROC-curve were the compulsory component of the ROC-analysis. The quality prediction model was labelled excellent at area under the curve 0.9–1.0, very good at 0.8–0.9, good at 0.7–0.8, medium at 0.6–0.7, and unsatisfactory at 0.5–0.6. According to the threshold indicator, the patients were divided into two groups for 5-year survival analysis by Mantel-Cox test. A Spearman correlation test was used for groups. A multivariate Cox proportional hazard analysis was developed using stepwise regression (forward selection, enter/remove limits p = .10) to identify independent predictors of outcomes. A p-value of less than .05 was considered statistically significant. R v.3.4.0 free soft was used for statistical analysis.

RESULTS

MELF-pattern

Distinctive changes in the glands that characterized the MELF-pattern were related with fibromyxoid stromal reaction. For instance, invasion of the myometrium by tumor glands showed that there is an absence of fibroblastic reaction (Fig. 1A). Intriguingly, fibromyxoid reaction compressing cancer glands were observed in the MELF pattern as expected (Fig. 1B).

The MELF-pattern was observed in eight cases (16.7%) in the group with favorable outcome. Fibromyxoid changes were typical for the MELF-pattern which was observed in 17 cases (56.7%) of EA in the group with unfavorable outcome. Statistical difference (p = .014) was detected by comparing the number of the MELF-pattern present in the two groups. The observed survival rate of a patient with EA was significantly lower (p = .002) when MELF pattern was present compared with when MELF-pattern was not present (Fig. 2A).

Number of vessels

In the group with favorable outcome of the disease, the vessels were mostly detected in a small or moderate amount, with an oval-shaped lumen. Slight atypia was observed in the endothelium where the basement membrane was visualized throughout the cross-section of the vessels (Fig. 1C). On the contrary, the vessels of the microvasculature within the hot spot areas in cases with unfavorable outcome had mostly irregularly-shaped lumen. They were closely located to each other, often forming a densely branching network. It should be noticed that the endothelium had an irregular shape and an irregular intermittent basement membrane in the unfavorable outcome group (Fig. 1D).
Fig. 1. (A) Stroma without fibroblastic reaction and tumor glands invading the myometrium. (B) MELF-pattern of the stroma with fibromyxoid reaction compressing the cancer glands. (C) Vessels in EA stroma with round lumen in group of patients with favorable outcome (arrows, CD34 immunostaining). (D) A large number of unusual vessels with dilated lumens in group of patients with unfavorable outcome (arrows, CD34 immunostaining). (E) Weak focal expression of VEGF in glands of EA, commonly detectable in patients with good outcome (VEGF immunostaining). (F) Diffuse strong expression of VEGF in glands of EA in cases of unfavorable outcome (VEGF immunostaining). MELF, microcystic, elongated, fragmented; EA, endometrioid adenocarcinoma; VEGF, vascular endothelial growth factor.
In the group of patients with unfavorable outcome, the median number of vessels in 1 mm² of EA tissue was 139.1 (range, 74.1 to 174.6), and in the group with favorable outcome the median was 95.5 (range, 57.0 to 171.0). A significantly increased number of vessels were detected in the group with unfavorable outcome (p < .001; z = 5.625), compared to favorable outcome group.

The ROC-analysis of this index showed that the area under the ROC-curve was 92.3% (95% CI, 82.5 to 97.6; p < .001). The sensitivity was 86.7% (95% CI, 69.3 to 96.2), the specificity was 96.7% (95% CI, 82.8 to 99.9), and the threshold value of the index was 114.0 vessels/mm².

After studying the overall survival rate of patients with EA depending on the number of vessels in 1 mm² of tumor, it was found that the survival rate was statistically lower (p < .001) in patients whose tumors had more than 114.0 vessels/mm² of tumor tissue (Fig. 2B).

Area of the vessels

The median of the vessel area in 1 mm² of tumor tissue in group 1 was 4,904.1 µm²/mm² (range, 4,400.1 to 6,245.1 µm²/mm²). The median of this index in the second group was 2,818.9 µm²/mm² (range, 1,348.2 to 5,449.8 µm²/mm²). A significantly larger area of vessels was detected in the unfavorable outcome group (p < .001, z = 6.247) compared with the favorable outcome group.

The ROC-analysis of the vessel area in 1 mm² of tumor tissue, it was found that the area under the ROC-curve was 97.0% (95% CI, 89.0 to 99.7; p < .001). The sensitivity, specificity, and threshold value of the index were 100% (95% CI, 88.4 to 100.0), 96.7% (95% CI, 82.8 to 99.9), and 3,541.2 µm²/mm², respectively.

The study of the overall survival rate of patients with EA depending on the vessel area of 1 mm² of tumors showed that the survival rate was statistically lower (p < .001) in patients whose vascular area in tumors was more than 3,541.2 µm²/mm² (Fig. 2C).

VEGF

The expression of VEGF, one of the main stimulators of angiogenesis, was observed in all cases of EA. Diffuse expression of this marker was detected in the stroma and glandular component of EA. However, in cases of favorable outcome, a weak staining was observed in the cytoplasm, indicating a lower expression of VEGF (Fig. 1E). In the glandular component of the tumor, VEGF

Fig. 2. Cumulative proportion survival. (A) MELF-pattern. (B) Number of vessels per 1 mm². (C) Area of vessels per 1 mm². (D) VEGF expression by tumor glands. MELF, microcystic, elongated, fragmented; VEGF, vascular endothelial growth factor.
expression was, however, more evident and uniform. In the group with unfavorable outcome, an opposite result of immunohistochemistry was observed: the VEGF expression was strong, detected as brown staining foci in the cytoplasm of the tumor cells (Fig. 1F).

In cases with unfavorable outcome, the median of VEGF expression was 82.1% (range, 59.1% to 100.0%) and it was statistically higher (p < .001; z = 6.616) in comparison with the median of cases with favorable outcome, which was 49.0% (range, 20.8% to 62.1%).

The ROC-analysis of VEGF expression showed that the area under the ROC-curve was 99.8% (95% CI, 93.6 to 100.0; p < .001). The sensitivity was 100.0% (95% CI, 88.4 to 100.0) and the specificity was 96.7% (95% CI, 82.8 to 99.9). The threshold value of the index was 58.1%. The survival rate was statistically lower (p < .001) in patients whose VEGF expression of the glandular tumor component was more than 58.1% (Fig. 2D), as expected.

Correlation analysis

Our study demonstrated a significant correlation between the MELF-pattern and VEGF expression in both groups. For instance, the correlation between the two was r = .541 (p < .001). This was also observed between VEGF expression and the area of vessels (r = .762, p < .001) and number of vessels (r = .648, p < .001). Correlation analysis describes the changes in cancer stroma caused by VEGF expression in cancer cells.

Multivariate Cox’s proportional hazard model

A multivariate Cox’s regression analysis revealed that MELF-pattern and the area and number of vessels per 1 mm² of tumor tissue are independent prognostic factors of 5-year survival of patients with EA (Table 2).

DISCUSSION

Our study shows VEGF expression as a predictor of survival in patients with EA. For instance, the higher the expression of VEGF in cancer cells, the lower the survival of the patients, as predicted in our study. Nowadays, VEGF is the most frequently studied angiogenic promoter; its expression is observed in the normal endometrium as well as in other uterine malignancies, although it is higher in cancer tissue when compared with normal. VEGF stimulates endothelial cell proliferation, but it also increases vascular permeability, which helps the tumor cells to migrate to metastatic sites.

<table>
<thead>
<tr>
<th>Factor</th>
<th>p-value</th>
<th>Hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELF-pattern</td>
<td>.013</td>
<td>2.20</td>
<td>1.18–4.09</td>
</tr>
<tr>
<td>No. of vessels</td>
<td>.009</td>
<td>3.31</td>
<td>1.33–8.16</td>
</tr>
<tr>
<td>Area of vessels</td>
<td><.001</td>
<td>1.03</td>
<td>1.01–1.17</td>
</tr>
</tbody>
</table>

CI, confidence interval; MELF, microcystic, elongated, fragmented.

The number and area of microvessels in our study showed statistically significant difference between the survival rates of patients with favorable outcome and unfavorable outcome. This can be used as a strong potential prognostic factor in the survival of patients with EA. Microvessel density in tumor-invaded tissue is increased by local angiogenesis that results in enhanced cancer cell proliferation during tumor progression. In gynecological cancer, angiogenesis is one of the crucial factors of tumor progression and plays a significant role in the maintenance of the growth of malignancies and their metastatic potential. Some authors suggested that the density of vessels of microvasculature is an indirect marker of the intensity of tumor vascularization, which is known to be associated with the progression of endometrial cancer and 5-year survival rate. In such reports, immunohistochemical marker CD34 was proven useful in the detection of these endothelial cells. The immunohistochemical expression of CD34 by endothelial cells allows counting the number and area of tumor vessels, which are prognostic signs that do not depend on other tumor characteristics, such as expressions of proliferation markers and adhesion molecules.

Our study shows MELF, Vessels in Endometrial Carcinoma • 461
We showed for the first time that there is a significant presence of MELF pattern and an increased number and area of vessels in cases of EA with unfavorable outcome. In our study, VEGF expression correlated with the area and number of vessels, but it did not have any predictive force according to multivariate Cox's proportional hazard analysis. Although our data suggest that these criteria may be used as prognostic factors of EA during the 5 years after radical surgical treatment, a larger independent cohort of samples should be studied to verify these findings.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

REFERENCES
The Intraoperative Immunohistochemical Staining of CD56 and CK19 Improves Surgical Decision for Thyroid Follicular Lesions

Ju Yeon Pyo · Sung-eun Choi · Eunah Shin · JaSeung Koo
SoonWon Hong

Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; 1Department of Pathology, CHA Gangnam Medical Center, CHA University, Seoul; 2Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Received: February 9, 2017
Revised: May 21, 2017
Accepted: May 25, 2017

Corresponding Author
SoonWon Hong, MD, PhD
Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea
Tel: +82-2-2019-3540
Fax: +82-2-3463-2103
E-mail: soonwonh@yuhs.ac

Background: When differential diagnosis is difficult in thyroid follicular lesions with overlapping histological features, the immunohistochemical staining can help confirm the diagnosis. We aimed to evaluate the effectiveness of rapid immunohistochemical stains of CD56 and cytokeratin 19 on frozen sections of thyroid follicular lesion and explore the possible gains and limitations of the practice. Methods: Eighty-six nodules of 79 patients whose intraoperative frozen sections were selected as the control group, and 53 nodules of 48 patients whose intraoperative frozen sections were subject to rapid immunohistochemistry were selected as the study group. Results: Five nodules (6%) in the control group were diagnosed as follicular neoplasm and six nodules (7%) were deferred. In the study group, six nodules (11%) were follicular neoplasm and none were deferred. Three nodules (4%) in the control group showed diagnostic discrepancy between the frozen and permanent diagnoses, but none in the study group. The average turnaround time for the frozen diagnosis of the control group was 24 minutes, whereas it was 54 minutes for the study group. Conclusions: Intraoperative rapid immunohistochemical stains significantly decreased the diagnostic discrepancy in this study. Considering the adverse effects of indefinite frozen diagnosis or discrepancy with permanent diagnoses, the intraoperative rapid immunohistochemical stain can help to accurately diagnose and hence provide guidance to surgical treatment.

Key Words: Thyroid; Follicular patterned lesion; Immunohistochemistry; Frozen; CD56; CK19

Follicular patterned lesions of the thyroid impose not so trivial diagnostic difficulty because the cytological features can be deceiving and the diagnosis of malignancy depends on non-disputable histologic evidence other than morphologic criteria. Thus, unlike other tumors, a limited number of representative sections of the lesion cannot be relied upon for an accurate diagnosis, and the diagnostic accuracy of fine needle aspiration and intraoperative frozen diagnosis are often compromised. Moreover, it is not surprising to find that even thyroid experts have discrepancy in the diagnosis of follicular lesions, harboring the entire spectrum of benign to malignant tumors, and yet, an accurate diagnosis is just as important for the follicular patterned lesions as for other tumors because treatment plans totally depend on the pathologic diagnosis. As such, there have been efforts to more actively utilize core biopsy in the diagnosis of thyroid lesions with expectations that immunohistochemical (IHC) stains will aid in more accurate diagnosis. However, we must not overlook the fact that IHC stains in follicular patterned lesions can vary from area to area, and so the IHC stain results in the core biopsy can be more often misleading than not. We also should consider the fact that for follicular neoplasm, a key to the diagnosis is the presence or absence of a complete capsule of the entire lesion, which can never be accurately assessed by core biopsy alone, irrespective of the IHC stain results. These limitations in the preoperative diagnosis of the follicular patterned lesions naturally lead to the conclusion that at present, there is no alternative other than assessing the histology of the entire lesion in cases of follicular patterned lesions. However, we propose that if not preoperatively, we can at least aid in making surgical decision intraoperatively by applying IHC stain to frozen section. Even though differential diagnosis of the follicular neoplasm and follicular variant papillary thyroid carcinoma (FVPTC) is difficult on frozen sections, shedding light on the more possible diagnosis between the two is plausible by frozen section and it can be an aid enough for the surgeon. We propose that IHC stains that are ancillary in the differential diagnosis of follicular neoplasm and FVPTC can also be applied.
to the frozen section intraoperatively, and among many that are used in permanent sections, we chose CD56 and cytokeratin 19 (CK19) based on our past experiences. We aimed to evaluate the exact positive yields of the IHC stains on intraoperative frozen sections and explore the possible gains and limitations of the practice.

MATERIALS AND METHODS

Patients and nodules

Eighty-six nodules of 79 patients whose intraoperative frozen sections were not subject to IHC stains at all were selected as the control group (Fig. 1A) and 53 nodules of 48 patients whose intraoperative frozen sections could be subject to IHC stains if necessary were selected as the study group (Fig. 1B). For each group, the study duration was about a month. This study was approved by the Institutional Review Board of Gangnam Severance Hospital with a waiver of informed consent (IRB No. 3-2015-0133).

Rapid IHC stain

Fresh frozen tissue in OCT compound was sectioned with Cryo-cut Microtome (Leica Biosystems, Newcastle Upon Tyne, UK) in 3–4 μm thickness, placed on silane coated slide, and let dry. The slide was then stained for rapid immunohistochemistry in LEICA BOND-III Autostainer using Bond Polymer Refine Detection kit (Leica Biosystems). Briefly, the dry slide was fixed in 4% paraformaldehyde for 1 minute, immersed in peroxide block for 2 minutes to endogenous peroxidase blocking, washed and then applied with primary antibody for 4 minutes. After washing with Bond Wash solution, the slide was sequentially applied with post primary agent for 2 minutes and polymer for 2 minutes with washings in-between. The antibodies used were CK19 (1:80, RCK108, mouse monoclonal, DAKO, Carpinteria, CA, USA) and CD56 (1:50, 123C3, mouse monoclonal, DAKO). They were detected with 3,3′-diaminobenzidine (DAB) chromogen and DAB enhancer and counterstained with hematoxylin. The entire process takes roughly about 30 minutes.

Microscopic evaluation

Nodules of the control group were intraoperatively diagnosed based on the hematoxylin and eosin (H&E) findings alone and the total amount of time spent on the diagnosis, so-called turnaround time, was recorded. Nodules of the study group were subject to IHC stains for CD56 and CK19 only when the diagnosis could not be reached on H&E findings alone. When H&E findings were informative enough for definitive diagnosis, IHC stains were not performed and the turnaround time was recorded. According to El Demellawy et al., membranous staining of follicular epithelial cells for CD56 (≥ 10% cut-off) was considered positive. As shown in the diagnostic algorithm of Fig. 1B, those lesions showing cytological features suspicious for, but not diagnostic of, papillary thyroid carcinoma (PTC) were subject to IHC stains, and PTC was diagnosed when the suspicious cells were CD56-negative and CK19-positive (Fig. 2A–C). When the suspicious cells were CD56-positive, however, the diagnosis of either follicular neoplasm (Fig. 2D–F) or adenomatous hyperplasia (Fig. 2G–I) was reached. These diagnoses were based upon consultation to an experienced thyroid pathologist (S.W. Hong). The turnaround time was recorded after the IHC stains for the study group. For the control group, the frozen diagnoses were deferred when the histological or cytological features of the nodules were equivocal or when the histological features were suspicious of follicular neoplasm (Fig. 1A). The intraoperative diagnoses were classified as benign, malignant, follicular neoplasm, and deferred. The number of lesions showing discrepancy between the frozen diagnosis and permanent diagnosis and the type of discrepancy were evaluated in those that were not deferred in the intraoperative diagnosis. Final diagnoses on the permanent sections of the deferred lesions and those that were reported as follicular neoplasm intraoperatively were also evaluated.

Statistical analysis

The type of intraoperative diagnosis, the number of discrepancy between the frozen diagnosis and the final permanent diagnosis, and the turnaround time in the intraoperative diagnosis of the two groups were analyzed by Student’s t test and Fisher exact test. Statistical analysis of data was performed using the SPSS software ver. 17.0 (SPSS Inc., Chicago, IL, USA). The p-value less than .05 were considered statistically significant.

RESULTS

Seventy-nine patients allocated to the control group consisted of 14 men and 65 women. Forty-eight patients in the study group consisted of eight men and 40 women. The clinicopathologic characteristics in two groups were tabulated (Table 1). There was no significant statistical difference in the distribution of gender and age between the two groups. A total of 84 nodules out of 86 in the control group (98%) were diagnosed within 40 minutes and only two nodules (2%) were diagnosed after 40 minutes. The turnaround time of 40 minutes was agreed to be a reasonable cutoff by the departments of pathology and surgery, considering
Fig. 1. Diagnostic algorithm of thyroid follicular patterned lesions on frozen section. (A) Control group. (B) Study group. H&E, hematoxylin and eosin; IHC, immunohistochemistry; CK19, cytokeratin 19.
the time required to construct one block of typical frozen section and the time required for rapid IHC. This is in line with the guidelines recommended by the Joint Commission of International Certification and the guidelines for quality management of the Korean Society of Pathologists. For frozen sections without immunostaining, the turnaround time was kept within 15 minutes to 20 minutes. The average turnaround time to diagnosis was 24 minutes for the control group. For the study group, 17 out of 53 nodules (32%) were diagnosed within 40 minutes and 36 nodules (68%) were diagnosed after 40 minutes (p < .000). The average turnaround time for the study group was 57 minutes (Table 1). As for the type of intraoperative frozen diagnosis, in 75 out of 86 nodules of the control group (87%) and 47 out of 53 nodules of the study group (89%), a clear definite diagnosis was possible. Five out of 86 nodules in the control group (6%) were diagnosed as follicular neoplasm, and six nodules (7%) were deferred. In contrast, six nodules out of 53 in the study group (11%) were diagnosed as follicular neoplasm, and none were deferred. There was no significant statistical difference in the distribution of intraoperative frozen diagnosis between the two groups (Table 1).

With respect to the diagnostic discrepancy between frozen diagnosis and permanent diagnosis in the two groups, three nodules out of 75 (4%) in the control group showed discrepancy.
Immunostain of CD56 in Thyroid Frozen

Two cases were initially diagnosed as adenomatous hyperplasia and lymphocytic thyroiditis on frozen sections, and then as conventional PTC and noninvasive capsulated FVPTC on permanent sections (discrepancy rate, 0.087); and one nodule was initially diagnosed as conventional PTC on frozen section, and then as lymphocytic thyroiditis on permanent section (discrepancy rate, 0.019). None of the study group had discrepancy between the frozen and permanent diagnoses (discrepancy rate, 0). Although they are not classified as a discrepancy, six malignant nodules in the control group turned out to be different histologic types in permanent sections (Table 2). In the control group, two out of five follicular neoplasms on frozen section turned out to be FVPTC on permanent sections. In the study group, two out of six follicular neoplasms on frozen section were diagnosed as oncocytic variant PTC and noninvasive capsulated FVPTC on permanent sections, due to different nuclear features and IHC profiles on permanent sections (Table 3). Four out of six deferred nodules of the control group were revealed to be FVPTC on permanent diagnosis (malignancy rate, 0.667) (Table 4). Immunophenotypes of 36 nodules in the study group are summarized in Table 5. All of nine nodules (CK19 +, CD56 +) were immunohistochemically matched with benign on permanent diagnosis, and all of 15 nodules (CK19 +, CD56 −) were matched with conventional PTC. Two nodules which were initially diagnosed as follicular neoplasm due to the

Table 1. Clinicopathologic features of the control group and the study group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group</th>
<th>Study group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (man:woman)</td>
<td>14:65 (18:82)</td>
<td>8:40 (17:83)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Age, mean (range, yr)</td>
<td>49 (24–75)</td>
<td>45 (24–68)</td>
<td>0.258*</td>
</tr>
<tr>
<td>Man</td>
<td>50 (32–75)</td>
<td>54 (41–68)</td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td>47 (24–70)</td>
<td>44 (24–64)</td>
<td></td>
</tr>
<tr>
<td>Turnaround time (min)</td>
<td>24</td>
<td>57</td>
<td>.006*</td>
</tr>
<tr>
<td><40 min</td>
<td>84 (98)</td>
<td>17 (32)</td>
<td></td>
</tr>
<tr>
<td>≥40 min</td>
<td>2 (2)</td>
<td>36 (68)</td>
<td></td>
</tr>
<tr>
<td>Frozen diagnosis</td>
<td>.149*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign</td>
<td>23 (27)</td>
<td>12 (23)</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>20 (23)</td>
<td>8 (15)</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>3 (4)</td>
<td>4 (7)</td>
<td></td>
</tr>
<tr>
<td>Malignancy</td>
<td>52 (60)</td>
<td>35 (66)</td>
<td></td>
</tr>
<tr>
<td>PTC, conventional</td>
<td>43 (50)</td>
<td>29 (55)</td>
<td></td>
</tr>
<tr>
<td>FVPTC</td>
<td>7 (8)</td>
<td>4 (7)</td>
<td></td>
</tr>
<tr>
<td>PTC, oncocytic variant</td>
<td>1 (1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>0</td>
<td>1 (2)</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>1 (1)</td>
<td>1 (2)</td>
<td></td>
</tr>
<tr>
<td>Follicular neoplasm</td>
<td>5 (6)</td>
<td>6 (11)</td>
<td></td>
</tr>
<tr>
<td>Deferred</td>
<td>6 (7)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%), unless otherwise indicated.

AH, adenomatous hyperplasia; LT, lymphocytic thyroiditis; PTC, papillary thyroid carcinoma; FVPTC, follicular variant papillary thyroid carcinoma; HC, Hurthle cell carcinoma; FC, follicular carcinoma, minimally invasive.

Table 2. Diagnostic discrepancy between frozen and permanent diagnoses in each group

<table>
<thead>
<tr>
<th>Frozen diagnosis (No. of nodules)</th>
<th>Permanent diagnosis (No. of nodules)</th>
<th>Discrepancy rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign</td>
<td>Malignant</td>
</tr>
<tr>
<td></td>
<td>AH LT PTCconventional FVPTCcap+ inv-</td>
<td>FVPTCcap+ inv+</td>
</tr>
<tr>
<td>Control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign (n=23)</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>19 0 1 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>0 2 0 1 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Malignant (n=52)</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>PTCconventional</td>
<td>0 1 38 0 1 2 1 0 0</td>
<td></td>
</tr>
<tr>
<td>FVPTC</td>
<td>0 0 0 0 6 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>0 0 0 0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Study group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign (n=12)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>8 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>0 4 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Malignant (n=35)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PTCconventional</td>
<td>0 0 29 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>FVPTC</td>
<td>0 0 0 0 1 3 0 0 0</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>0 0 0 0 0 0 0 0 1</td>
<td></td>
</tr>
</tbody>
</table>

AH, adenomatous hyperplasia; LT, lymphocytic thyroiditis; PTCconventional, papillary thyroid carcinoma, conventional; FVPTC, follicular variant papillary thyroid carcinoma; cap+, capsule present; inv-, no capsule invasion; inv+, capsule invasion present; cap-, no capsule; HC, Hurthle cell carcinoma; FC, follicular carcinoma, minimally invasive.
IHC staining results of CK19- and CD56+ were finally diagnosed as oncocytic variant PTC in one and FVPTC in the other; the IHC stain results were reversed to CK19+ and CD56- on permanent sections.

DISCUSSION

Application of IHC to frozen sections can diminish critical diagnostic discrepancy between the intraoperative frozen diagnosis and subsequent permanent diagnosis. In our study, those that were not subject to IHC on frozen sections showed a diagnostic discrepancy in 4%, a change in histologic subtype of malignant nodules in 11%, and a diagnostic deferral in 7%. In those with a diagnostic discrepancy, for example, FVPTC was misdiagnosed as lymphocytic thyroiditis intraoperatively, lymphocytic thyroiditis was mistaken for conventional PTC, and conventional PTC was missed due to a sampling error. In addition, six out of 52 malignant nodules in the control group showed altered histological subtypes, but there was no difference in the 35 malignant nodules of the study group. Most of the deferred lesions and lesions of follicular neoplasm were finally diagnosed as capsulated FVPTC. However, those to which IHC was applied intraoperatively did not have any diagnostic discrepancy and none of them were deferred.

With the introduction of FVPTC in 1977, many cases previously thought to be follicular neoplasm were confirmed to be, in fact, FVPTC. This has led to a rather increased frequency of intra-

| Table 3. Malignancy rate of FN between frozen and permanent diagnoses in each group |
|--|--|--|--|
| FN at frozen diagnosis (No. of nodules) | Permanent diagnosis (No. of nodules) | Other diagnosis (No. of nodules) | Malignancy |
| Benign | Follicular neoplasm | Malignant | Total | Benign | Malignant | Total | FVPTC cap+, inv- | FVPTC cap+, inv+ | Total | Malignancy rate |
| FA | HA | HC | FC | AH | PTCo | FVPTC | HC | FC | |
| Control group (n=5) | 1 | 0 | 1 | 1 | 3 (60) | 0 | 0 | 1 | 1 | 2 (40) | 0.800 |
| Study group (n=6) | 2 | 1 | 0 | 0 | 3 (50) | 1 | 1a | 1a | 0 | 3 (50) | 0.333 |

Values are presented as number (%).

FN, follicular neoplasm; FA, follicular adenoma; HA, hurthle cell adenoma; HC, hurthle cell carcinoma; FC, follicular carcinoma, minimally invasive; AH, adenomatous hyperplasia; PTCo, oncocytic variant of papillary thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma; cap+, tumor capsule present; inv-, no capsule invasion; inv+, capsule invasion present.

*Although it showed CD56 positivity and cytokeratin 19 (CK19) negativity on rapid immunohistochemical stain of frozen section, focal loss of CD56 and focal reactivity of CK19 were revealed on permanent section of remained lesion.

| Table 4. Malignancy rate of deferred lesion between frozen and permanent diagnoses in each group |
|--|--|--|--|
| Frozen diagnosis (deferred) | Permanent diagnosis (No. of nodules) | Malignant (n=4) | Malignancy |
| FA | HA | AH | PTCo | FVPTC cap+, inv- | FVPTC cap+, inv+ | HC | FC | |
| Control group | 1 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0.667 |
| Study group | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

FA, follicular adenoma; HA, hurthle cell adenoma; AH, adenomatous hyperplasia; PTCo, oncocytic variant of papillary thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma; cap+, tumor capsule present; inv-, no capsule invasion; inv+, capsule invasion present; HC, hurthle cell carcinoma; FC, follicular carcinoma, minimally invasive.

| Table 5. Immunophenotypes of the study group nodules that were subject to rapid immunohistochemical stain |
|--|--|--|--|
| Immunophenotype | Permanent diagnosis (No. of nodules) | Malignant (n=21) | Total No. of nodules (n=36) |
| AH | LT | FA | HA | FC | HC | PTCo | PTCo | FVPTC |
| CK19+/CD56- | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| CK19+/CD56- | 3 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 8 |
| CK19+/CD56- | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 1a | 3a | 19 |
| CK19+/CD56+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

AH, adenomatous hyperplasia; LT, lymphocytic thyroiditis; FA, follicular adenoma; HA, hurthle cell adenoma; FC, follicular carcinoma, minimally invasive; HC, hurthle cell carcinoma; PTCo, papillary thyroid carcinoma, conventional; PTCo, oncocytic variant of papillary thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma.

*Although it showed CD56 positivity and cytokeratin 19 (CK19) negativity on rapid immunohistochemical stain of frozen section, focal loss of CD56 and focal reactivity of CK19 were revealed on permanent section of remained lesion.
operative pathologic consultation by frozen section in cases that had been preoperatively diagnosed as follicular neoplasm or reported to have some degree of nuclear atypia. Of course, these cases cannot be definitively diagnosed on frozen sections and they require meticulous sampling and ancillary IHC stain on permanent sections to reach definitive diagnosis.11-13 To our knowledge, there has not yet been any report in thyroid lesions that employed the use of IHC in the intraoperative frozen diagnosis. Follicular neoplasm, by definition, cannot be a candidate for frozen diagnosis because its diagnosis depends on the histologic examination of the entire capsule of the mass.15 However, as FVPTC has entered the diagnostic spectrum, a possible follicular neoplasm has also become a candidate for frozen diagnosis in order to rule out the possibility of FVPTC16 which, in contrast to the follicular neoplasm, can be diagnosed on representative sections of the mass like other PTCs. At this point, we should note that considering the morphologic and gross features of FVPTC, there is always a hindrance of misinterpreting the microscopic appearance on frozen sections due to frozen artifacts.17 In our institution, we have an experience of detecting micrometastasis in lymph nodes of breast cancer patients by applying IHC stain for cytokeratin on frozen sections.18 With this previous experience, we applied IHC on frozen sections of the thyroid follicular lesions, expecting to distinguish between malignant and benign lesions intraoperatively and hence minimize the number of deferred or misdiagnosed lesions.

Many antibodies are now being used in the diagnosis of FVPTC,11-13 but we chose CD56 and CK19 based on the integrated results of many antibodies and our accumulated experience heretofore. The combined results of CD56 negativity and CK19 positivity can maximize the diagnosis of PTC. Moreover, in contrast to HBME1, CK19 is often positive not only in PTC but also in adenomatous hyperplasia as well,11-13 and this has led us to integrate the staining patterns of the two antibodies in the differential diagnosis of follicular patterned lesions. In our study, we could definitely diagnose PTC and FVPTC in follicular patterned lesions showing atypical nuclear features with a constant IHC staining pattern of CK19$^+$ and CD56$^-$. On the other hand, we could avoid overdiagnosis by confirming an IHC staining pattern of CK19$^+$ and CD56$^-$ in benign follicular lesions such as lymphocytic thyroiditis, even with nuclear atypia.

The study group showed a longer turnaround time, which was 33 minutes longer than that of the control group in average, and 68\% of them took more than 40 minutes in the diagnosis. However, we should consider the total cost and psychological trauma of patients in the control group whose diagnoses were deferred (7\%) or discrepant (4\%). The time taken in IHC staining can be shortened to some extent although limited, but we expect to shorten the turnaround time more effectively if only we can decide with more speed whether the case in hand needs IHC on frozen section or not.

Most of the nodules diagnosed as follicular neoplasm were finally diagnosed as FVPTC. Four out of five nodules of the control group were diagnosed as follicular carcinoma in one, hurthle cell carcinoma in one, and as encapsulated FVPTC in two nodules with or without capsular invasion. In contrast, only one out of six nodules diagnosed as follicular neoplasm in the study group was finally diagnosed as noninvasive encapsulated FVPTC after an additional IHC staining and further evaluation of permanent sections. The other nodule was diagnosed as oncocyctic PTC after further evaluation of the remaining specimen.

Deferred lesions or lesions of follicular neoplasm that are finally confirmed to be malignant on permanent sections need to undergo secondary surgical procedure or other additional treatment. As such, we should note that 80\% of the follicular neoplasms and 67\% of the deferred lesions in the control group were finally confirmed to be malignant, whereas 33\% of the follicular neoplasms in the study group were finally confirmed to be malignant. In the control group, two patients diagnosed with follicular neoplasm underwent completion thyroidectomy and two times of radiiodine treatment. Three patients whose frozen diagnoses were deferred underwent additional radiiodine treatment. On the other hand, three patients in the study group, diagnosed as FVPTC (n = 2) and lymphocytic thyroiditis (n = 1), avoided secondary surgical procedure.

We do have two nodules (3.7\%) in the study group that could not be diagnosed even with the aid of IHC, which is only natural because patterns of immunoperoxidase in FVPTC can vary even in permanent sections.11-13 But, if we consider the fact that the number escalates to six (7.0\%) in the control group without the aid of IHC, we can safely say that the IHC can make a rather significant difference in the accuracy of frozen diagnosis in follicular patterned lesions. Therefore, we propose that if more specific antibodies are selected and applied, an intraoperative IHC stain on frozen sections can significantly improve the diagnostic accuracy in thyroid follicular lesions.

In conclusion, although the significance of intraoperative IHC stain is somewhat compromised by longer turnaround time, it considerably diminishes the diagnostic discrepancy and inaccuracy. With consideration of the adverse effects of indefinite intraoperative diagnosis or discrepancy between the frozen and permanent diagnoses incurred on the patients, a development of more specific antibodies is necessary and their application to the intraoperative
diagnosis of thyroid follicular lesions will further increase the diagnostic accuracy.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
This work is funded by a grant of 2015 Korean Thyroid Association.

REFERENCES
Diverse Immunoprofile of Ductal Adenocarcinoma of the Prostate with an Emphasis on the Prognostic Factors

Se Un Jeong
Anuja Kashkar Kekatpure
Ja-Min Park¹ · Minkyu Han²
Hee Sang Hwang · Hui Jeong Jeong
Heounjeong Go · Yong Mee Cho

Department of Pathology, ¹Asan Institute for Life Sciences, ²Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Received: February 28, 2017
Revised: May 13, 2017
Accepted: June 2, 2017

Corresponding Author
Yong Mee Cho, MD, PhD
Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
Tel: +82-2-3010-5965
Fax: +82-2-3010-7898
e-mail: yongcho@amc.seoul.kr

Background: Ductal adenocarcinoma (DAC) of the prostate is an uncommon histologic subtype whose prognostic factors and immunoprofile have not been fully defined. Methods: To define its prognostic factors and immunoprofile, the clinicopathological features, including biochemical recurrence (BCR), of 61 cases of DAC were analyzed. Immunohistochemistry was performed on tissue microarray constructs to assess the expression of prostate cancer-related and mammalian target of rapamycin (mTOR) signaling-related proteins. Results: During the median follow-up period of 19.3 months, BCR occurred in 26 cases (42.6%). DAC demonstrated a wide expression range of prostate cancer-related proteins, including nine cases (14.8%) that were totally negative for pan-cytokeratin (PanCK) immunostaining. The mTOR signaling-related proteins also showed diverse expression. On univariate analysis, BCR was associated with high preoperative serum levels of prostate-specific antigen (PSA), large tumor volume, predominant ductal component, high Gleason score (GS), comedo-necrosis, high tumor stage (pT), lymphovascular invasion, and positive surgical margin. High expressions of phospho-mTOR (p-mTOR) as well as low expressions of PSA, phospho-S6 ribosomal protein (pS6) and PanCK were associated with BCR. On multivariable analysis, GS, pT, and immunohistochemical expressions of PanCK and p-mTOR remained independent prognostic factors for BCR. Conclusions: These results suggest GS, pT, and immunohistochemical expressions of PanCK and p-mTOR as independent prognostic factors for BCR in DAC. Since DAC showed diverse expression of prostate cancer-related proteins, this should be recognized in interpreting the immunoprofile of DAC. The diverse expression of mTOR-related proteins implicates their potential utility as predictive markers for mTOR targeted therapy.

Key Words: Prostatic neoplasms; Carcinoma, ductal; Immunohistochemistry; Prognosis

Ductal adenocarcinoma (DAC) is an uncommon histologic subtype of prostate cancer, accounting for 3.2% of prostate cancer cases.¹ DAC is usually combined with acinar adenocarcinoma (AAC), while its pure form comprises only 0.2%–0.4% of prostate cancers.¹ DAC is defined by large papillary or cribriform glands lined by tall pseudostratified columnar cells with prominent nucleoli, coarse chromatin, and mitotic figures, which are unusual for AAC.¹ DAC is histologically similar to endometrioid adenocarcinoma of the female genital tract,² and thus it was initially described as “endometrial carcinoma of the prostatic utricle” in 1967.³ In addition, the histologic features are overlapping with adenocarcinomas of other organs, such as the gastrointestinal tract and lung.

DAC often presents at an advanced stage, frequently with metastasis.¹ Metastatic spread of DAC occurs commonly in the bone and lymph nodes, similar to AAC. DAC also metastasizes to unusual sites for ACC, such as the lung, liver, and rarely penis, testis, and skin.¹,² When DAC presents as a metastatic disease, it poses a diagnostic challenge because of its overlapping features with adenocarcinomas of other organ sites.¹ In such cases, ancillary studies, like immunohistochemistry, may help make the differential diagnosis. However, the immunoprofile of DAC remains to be defined.

Prostate cancer is dependent on persistent androgen receptor (AR) signaling, which is obtained by overexpression, amplification, point mutations, and splice variants of AR. There are additional signaling pathways implicated in prostate cancer progression, among which the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is notable because it is altered in nearly all advanced prostate cancers.⁶ These findings suggest targeting both AR and PI3K/AKT/mTOR pathways as a new therapeutic approach in castration-resistant prostate cancer.⁶ However, an immunohistochemical expression of the mTOR signaling pathway in DAC has not yet been reported.

In an effort to expand our understanding of this rare subtype
of prostate cancer, we examined the clinicopathological features of 61 cases of DAC and their immunoprofiles of prostate cancer-related and mTOR pathway-related proteins. Specific attention was paid to define prognostic factors for biochemical recurrence (BCR) and potential predictive markers for mTOR inhibitors.

MATERIALS AND METHODS

Study samples

This retrospective study initially included 87 cases that underwent radical prostatectomy for clinically localized prostate cancer and were pathologically diagnosed as DAC between January 1995 and December 2015 at Asan Medical Center (Seoul, Republic of Korea). None of these cases were treated with neoadjuvant androgen deprivation therapy. A total of 26 cases were excluded for the following reasons: 16 cases were reassessed as AAC during retrospective review; nine cases were excluded either because the tumor tissue was too small to construct two representative cores of tissue microarray (TMA) or because formalin-fixed paraffin-embedded tissue blocks were unavailable; and one case was excluded because clinical follow-up data was not available. As such, 61 cases of DAC were included in the final analysis.

Patients' clinicopathological information was obtained from electronic medical records and surgical pathology reports. BCR was defined as a serum prostate-specific antigen (PSA) level ≥ 0.2 ng/mL on two consecutive occasions after achieving undetectable PSA following radical prostatectomy. All pathologic materials were reviewed for diagnostic reassessment according to the 2016 World Health Organization Tumor Classification. Gleason score (GS) and pathologic tumor stage (pT) were assigned according to the 2015 modified Gleason grading system and the American Joint Committee on Cancer Staging System, seventh edition, respectively. This study was approved by the Institutional Review Board of Asan Medical Center with a waiver of informed consent (2011-0499).

TMA construction

A TMA construct of 2-mm-diameter cores was generated from the 10% neutrally buffered formalin-fixed, paraffin-embedded tissue blocks of radical prostatectomy specimens using a tissue microarrayer (Quick-Ray, Unitma Co. Ltd., Seoul, Korea). Two representative cores from different DAC areas were included for each case.

Immunohistochemistry

Prostate cancer–related proteins analyzed in this study included pan-cytokeratin (PanCK), PSA, AR, enhancer of zeste homolog 2 (EZH2), p53, and ETS-related gene (ERG). Phosphatase and tensin homolog (PTEN), phospho-mammalian target of rapamycin (p-mTOR), phospho-S6 ribosomal protein (pS6), and 14-3-3 sigma protein were included as mTOR pathway–related proteins. Immunohistochemical staining was performed using an automated staining system (BenchMark XT, Ventana Medical Systems, Tucson, AZ, USA). The primary antibodies used in this study, their dilutions, and the subcellular location of each antigen are summarized in Table 1. Nuclei were counterstained with hematoxylin. Representative expression patterns of these proteins are presented in Fig. 1.

The immunohistochemical staining results were assessed in the DAC component only by two pathologists (S.U.J. and A. K.K.), both of whom were blinded to the associated clinicopathological information. The staining intensity of the antibodies was initially scored as negative, weak, moderate, or strong. Cases with moderate to strong intensity were regarded as positive, and then the average percentage of positive cells in all cores was recorded.

Immunohistochemistry on whole section

To exclude the issues of intratumoral heterogeneity, immunohistochemistry was performed on whole sections of one negative case, one intermediate case, and one positive case for each antibody. In addition, to exclude technical problems, such as poor formalin-fixation of radical prostatectomy specimens, immunohistochemistry for PanCK was performed on whole sections of all PanCK-negative cases.

Table 1. Antibodies used in the study

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Dilution</th>
<th>Company</th>
<th>Subcellular location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PanCK</td>
<td>1:400</td>
<td>Leica, Newcastle, UK</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>PSA</td>
<td>1:200</td>
<td>Dako Corp., Carpinteria, CA</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>AR</td>
<td>1:200</td>
<td>Cell Marque, Rocklin, CA</td>
<td>Nucleus</td>
</tr>
<tr>
<td>ERG</td>
<td>1:100</td>
<td>Epitomics, Burlingame, CA</td>
<td>Nucleus</td>
</tr>
<tr>
<td>p53</td>
<td>1:1500</td>
<td>Dako Corp., Carpinteria, CA</td>
<td>Nucleus</td>
</tr>
<tr>
<td>EZH2</td>
<td>1:25</td>
<td>Cell Signal Technology, Beverly, MA</td>
<td>Nucleus</td>
</tr>
<tr>
<td>PTEN</td>
<td>1:100</td>
<td>Cell Signal Technology, Beverly, MA</td>
<td>Cytoplasm/nucleus</td>
</tr>
<tr>
<td>p-mTOR</td>
<td>1:100</td>
<td>Cell Signal Technology, Beverly, MA</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>pS6</td>
<td>1:100</td>
<td>Cell Signal Technology, Beverly, MA</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>14-3-3 sigma</td>
<td>1:200</td>
<td>Sigma, St. Louis, MO</td>
<td>Cytoplasm</td>
</tr>
</tbody>
</table>

PanCK, pan-cytokeratin; PSA, prostate specific antigen; AR, androgen receptor; ERG, ETS-related gene; EZH2, enhancer of zeste Homolog2; PTEN, phosphatase and tensin homolog; p-mTOR, phospho-mammalian target of rapamycin; pS6, phospho-S6 ribosomal protein.
Statistical analysis

For descriptive statistics and univariate analyses, all continuous data were expressed as mean±standard deviation and were compared using Student’s t tests. The optimal cut-off value of the protein expression was calculated from the receiver operating characteristic (ROC) curve analysis. Categorical data were compared with the chi-square test. BCR was estimated using the Kaplan-Meier method and the resulting curves were compared by log-rank test. In order to minimize the exclusion of variables that are important in this study, all variables with p-values of <.1 in the univariate analysis were included in the multivariate analysis, for which the Cox proportional hazards model was used. The overlapping variables were excluded in the multivariate analysis. Independent variables were chosen by the stepwise method. p-values of <.05 were considered statistically significant.

RESULTS

Clinicopathological features of DAC

The clinicopathological features of the 61 DAC cases are summarized in Table 2. The median age at the time of radical prostatectomy was 68 years (range, 51 to 77 years), with a median preoperative serum PSA level of 11.7 ng/mL (range, 0.6 to 66.4 ng/mL). The mean total tumor volume was 28.5% (range, 2% to 95%), in which the DAC component occupied 48.3% on average (range, 5% to 100%). Four cases (6.5%) were pure DAC. Among histologic DAC patterns, the papillary pattern was the most common (48 cases, 78.7%), followed by cribriform pattern (nine cases, 14.7%) and prostatic intraepithelial neoplasia-like pattern (four cases, 6.6%). A significant proportion of the cases were of high grade (GS ≥ 8: 41 cases, 67.2%) with accompanying comedo-necrosis in 17 cases (27.9%). The majority of the cases were of high stage (pT3: 44 cases, 72.1%) with frequent extraprostatic extension (42 cases, 68.9%), lymphovascular invasion (26 cases, 42.6%), positive surgical margin (41 cases, 67.2%), and seminal vesicle involvement (15 cases, 24.6%).

Table 2. Clinicopathological features of 61 cases of ductal adenocarcinoma

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>68.0 ± 5.6</td>
</tr>
<tr>
<td>Preoperative PSA (ng/mL)</td>
<td>11.7 ± 10.3</td>
</tr>
<tr>
<td>Total tumor volume (%)</td>
<td>28.5 ± 21.5</td>
</tr>
<tr>
<td>DAC component (%)</td>
<td>48.3 ± 32.5</td>
</tr>
<tr>
<td>Predominant component</td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td>32 (52.5)</td>
</tr>
<tr>
<td>Acinar</td>
<td>29 (47.5)</td>
</tr>
<tr>
<td>Predominant DAC pattern</td>
<td></td>
</tr>
<tr>
<td>Papillary</td>
<td>48 (78.7)</td>
</tr>
<tr>
<td>Cribriform</td>
<td>9 (14.7)</td>
</tr>
<tr>
<td>PIN-like</td>
<td>4 (6.6)</td>
</tr>
<tr>
<td>Gleason score</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20 (32.8)</td>
</tr>
<tr>
<td>8</td>
<td>29 (47.5)</td>
</tr>
<tr>
<td>9</td>
<td>12 (19.7)</td>
</tr>
<tr>
<td>Pathologic tumor stage</td>
<td></td>
</tr>
<tr>
<td>pT2a-c</td>
<td>17 (27.9)</td>
</tr>
<tr>
<td>pT3a</td>
<td>29 (47.5)</td>
</tr>
<tr>
<td>pT3b</td>
<td>15 (24.6)</td>
</tr>
<tr>
<td>Tertiary grade 5</td>
<td>12 (19.7)</td>
</tr>
<tr>
<td>Comedonecrosis</td>
<td>17 (27.9)</td>
</tr>
<tr>
<td>Extraprostatic extension</td>
<td>42 (68.9)</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>26 (42.6)</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>52 (85.2)</td>
</tr>
<tr>
<td>Positive surgical margin</td>
<td>41 (67.2)</td>
</tr>
<tr>
<td>Seminal vesicle involvement</td>
<td>15 (24.6)</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td>3 (4.9)</td>
</tr>
<tr>
<td>Biochemical recurrence</td>
<td>26 (42.6)</td>
</tr>
<tr>
<td>Death</td>
<td>2 (3.3)</td>
</tr>
</tbody>
</table>

Values are presented as mean±SD or number (%).

PSA, prostate-specific antigen; DAC, ductal adenocarcinoma; PIN-like, prostatic intraepithelial neoplasia-like; SD, standard deviation.

Fig. 1. Representative cases with strong intensity of each immunohistochemical staining: pan-cytokeratin (A), prostate-specific antigen (B), androgen receptor (C), ETS-related gene (D), p53 (E), enhancer of zeste homolog 2 (F), phosphatase and tensin homolog (G), phosphomammalian target of rapamycin (H), phospho-S6 ribosomal protein (I), and 14-3-3 sigma (J).
Table 3. Correlation between expression of prostate cancer–related proteins and clinicopathological features of DAC

<table>
<thead>
<tr>
<th></th>
<th>PanCK</th>
<th></th>
<th>ERG</th>
<th></th>
<th>p53</th>
<th></th>
<th>AR</th>
<th></th>
<th>EZH2</th>
<th></th>
<th>PSA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>p-value</td>
<td>Low</td>
<td>High</td>
<td>p-value</td>
<td>Low</td>
<td>High</td>
<td>p-value</td>
<td>Low</td>
<td>High</td>
<td>p-value</td>
</tr>
<tr>
<td>No. of cases</td>
<td>30 (49.2)</td>
<td>31 (50.8)</td>
<td>.700</td>
<td>58 (95.1)</td>
<td>3 (4.9)</td>
<td>.700</td>
<td>46 (75.4)</td>
<td>15 (24.6)</td>
<td>.700</td>
<td>42 (68.9)</td>
<td>19 (31.1)</td>
<td>.700</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>68.3 (56–75)</td>
<td>67.7 (51–77)</td>
<td>.526</td>
<td>67.9 (51–77)</td>
<td>70.0 (65–75)</td>
<td>.526</td>
<td>67.5 (51–77)</td>
<td>69.3 (53–76)</td>
<td>.285</td>
<td>67.3 (51–77)</td>
<td>69.5 (59–76)</td>
<td>.163</td>
</tr>
<tr>
<td>PSA (ng/mL)</td>
<td>14.0 (3.1–66.4)</td>
<td>9.5 (0.6–24.1)</td>
<td>.363</td>
<td>11.8 (0.6–66.4)</td>
<td>9.0 (0.6–13.1)</td>
<td>.648</td>
<td>11.3 (3.4–66.4)</td>
<td>13.0 (6.4–31.3)</td>
<td>.573</td>
<td>12.7 (1.8–66.4)</td>
<td>9.5 (0.6–30.3)</td>
<td>.269</td>
</tr>
<tr>
<td>GS</td>
<td>.731</td>
<td>.175</td>
<td>.015</td>
<td>.350</td>
<td>.025</td>
<td>.246</td>
<td>.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10 (33.3)</td>
<td>10 (32.3)</td>
<td>20 (66.7)</td>
<td>19 (63.3)</td>
<td>1 (6.7)</td>
<td>11 (36.7)</td>
<td>9 (47.4)</td>
<td>14 (63.8)</td>
<td>6 (26.1)</td>
<td>5 (15.2)</td>
<td>15 (53.6)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13 (43.3)</td>
<td>16 (51.6)</td>
<td>26 (84.8)</td>
<td>3 (100)</td>
<td>8 (53.3)</td>
<td>19 (45.2)</td>
<td>10 (52.6)</td>
<td>19 (60.0)</td>
<td>10 (43.5)</td>
<td>20 (60.6)</td>
<td>9 (32.1)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7 (23.3)</td>
<td>5 (16.1)</td>
<td>12 (20.7)</td>
<td>6 (13.0)</td>
<td>6 (40.0)</td>
<td>12 (28.6)</td>
<td>0</td>
<td>13 (13.2)</td>
<td>7 (36.8)</td>
<td>18 (84.2)</td>
<td>8 (42.1)</td>
<td>4 (14.2)</td>
</tr>
<tr>
<td>pT</td>
<td>.444</td>
<td>.543</td>
<td>.072</td>
<td>.350</td>
<td>.004</td>
<td>.448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2a-c</td>
<td>5 (16.7)</td>
<td>12 (38.7)</td>
<td>17 (29.3)</td>
<td>16 (33.6)</td>
<td>1 (6.7)</td>
<td>14 (33.3)</td>
<td>3 (15.8)</td>
<td>16 (42.1)</td>
<td>1 (4.3)</td>
<td>7 (21.2)</td>
<td>10 (35.7)</td>
<td></td>
</tr>
<tr>
<td>T3a</td>
<td>19 (63.3)</td>
<td>10 (32.3)</td>
<td>27 (46.6)</td>
<td>2 (66.7)</td>
<td>8 (53.3)</td>
<td>21 (45.7)</td>
<td>8 (53.3)</td>
<td>18 (42.9)</td>
<td>11 (57.9)</td>
<td>13 (34.2)</td>
<td>16 (69.6)</td>
<td>16 (48.5)</td>
</tr>
<tr>
<td>T3b</td>
<td>6 (20.0)</td>
<td>9 (29.0)</td>
<td>14 (24.1)</td>
<td>1 (33.3)</td>
<td>9 (19.6)</td>
<td>6 (40.0)</td>
<td>10 (23.8)</td>
<td>5 (26.3)</td>
<td>9 (23.7)</td>
<td>6 (26.1)</td>
<td>10 (30.3)</td>
<td>5 (17.9)</td>
</tr>
<tr>
<td>LVI</td>
<td>.912</td>
<td>.039</td>
<td>.030</td>
<td>.539</td>
<td>.025</td>
<td>.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>17 (56.7)</td>
<td>18 (58.1)</td>
<td>35 (50.3)</td>
<td>30 (65.2)</td>
<td>5 (33.3)</td>
<td>23 (54.8)</td>
<td>12 (63.2)</td>
<td>26 (68.4)</td>
<td>9 (39.1)</td>
<td>15 (45.5)</td>
<td>20 (71.4)</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>13 (43.3)</td>
<td>13 (41.9)</td>
<td>23 (39.7)</td>
<td>3 (100)</td>
<td>16 (34.8)</td>
<td>10 (66.7)</td>
<td>19 (45.2)</td>
<td>7 (36.8)</td>
<td>12 (31.6)</td>
<td>14 (60.9)</td>
<td>18 (54.5)</td>
<td>8 (28.6)</td>
</tr>
<tr>
<td>Comedo-necrosis</td>
<td>.715</td>
<td>.829</td>
<td>.011</td>
<td>.222</td>
<td>.034</td>
<td>.301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>21 (70.0)</td>
<td>23 (74.2)</td>
<td>42 (72.4)</td>
<td>2 (66.7)</td>
<td>37 (80.4)</td>
<td>7 (46.7)</td>
<td>28 (66.7)</td>
<td>16 (84.2)</td>
<td>31 (81.6)</td>
<td>13 (56.5)</td>
<td>22 (66.7)</td>
<td>22 (76.6)</td>
</tr>
<tr>
<td>Present</td>
<td>9 (30.0)</td>
<td>8 (25.8)</td>
<td>16 (27.6)</td>
<td>1 (33.3)</td>
<td>9 (19.6)</td>
<td>8 (53.3)</td>
<td>14 (33.3)</td>
<td>3 (15.8)</td>
<td>7 (18.4)</td>
<td>10 (43.5)</td>
<td>11 (33.3)</td>
<td>6 (21.4)</td>
</tr>
<tr>
<td>Positive RM</td>
<td>.122</td>
<td>.215</td>
<td>.959</td>
<td>.297</td>
<td>.761</td>
<td>.921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>7 (23.3)</td>
<td>13 (41.9)</td>
<td>20 (34.5)</td>
<td>0</td>
<td>15 (32.6)</td>
<td>5 (33.3)</td>
<td>12 (28.6)</td>
<td>8 (42.1)</td>
<td>13 (34.2)</td>
<td>7 (30.4)</td>
<td>11 (33.3)</td>
<td>9 (32.1)</td>
</tr>
<tr>
<td>Present</td>
<td>23 (76.7)</td>
<td>18 (58.1)</td>
<td>38 (65.5)</td>
<td>3 (100)</td>
<td>31 (67.4)</td>
<td>10 (66.7)</td>
<td>30 (71.4)</td>
<td>11 (57.9)</td>
<td>25 (65.8)</td>
<td>16 (69.6)</td>
<td>22 (66.7)</td>
<td>19 (67.9)</td>
</tr>
<tr>
<td>LN metastasis</td>
<td>.573</td>
<td>.686</td>
<td>.310</td>
<td>.232</td>
<td>.873</td>
<td>.102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>29 (96.7)</td>
<td>29 (93.5)</td>
<td>55 (94.8)</td>
<td>3 (100)</td>
<td>43 (93.5)</td>
<td>15 (100)</td>
<td>39 (92.9)</td>
<td>19 (100)</td>
<td>36 (94.8)</td>
<td>22 (95.7)</td>
<td>30 (90.9)</td>
<td>28 (100)</td>
</tr>
<tr>
<td>Present</td>
<td>1 (1.0)</td>
<td>2 (6.5)</td>
<td>3 (5.2)</td>
<td>0</td>
<td>3 (6.5)</td>
<td>0</td>
<td>3 (7.1)</td>
<td>0</td>
<td>2 (5.2)</td>
<td>1 (4.3)</td>
<td>3 (9.1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Values are presented as median (range) or number (%).

Cut-off for high expression of each protein is ≥50% for PanCK, 100% for ERG, ≥10% for p53, 100% for AR, ≥25% for EZH2, and ≥70% for PSA.

DAC, ductal adenocarcinoma; PanCK, pan-cytokeratin; ERG, ETS-related gene; AR, androgen receptor; EZH2, enhancer of zeste homolog 2; PSA, prostate-specific antigen; GS, Gleason score; pT, pathologic tumor stage; LVI, lymphovascular invasion; RM, resection margin; LN, lymph node.
Involvement (15 cases, 24.6%).

During the median follow-up period of 19.3 months (range, 1 to 70 months), BCR occurred in 26 cases (42.6%) at a median of 10.5 months (range, 1 to 44 months) after the surgery. Two patients (3.3%) died, and one died of prostate cancer (1.6%).

Expression of prostate cancer-related proteins in DAC

The prostate cancer–related proteins showed diverse expressions in DAC as shown in Fig. 2A. PanCK and PSA were heterogeneously expressed with a median value of 50% and 65%, respectively (range, 0% to 100%). Furthermore, nine cases (14.8%) were negative for PanCK and and two cases (3.3%) for PSA. AR was expressed in all DAC cases with a heterogeneous pattern and a median value of 85% (range, 10% to 100%). ERG expression was not observed in most cases (54 cases, 88.5%) and only seven cases (11.5%) showed focal or diffuse positivity. p53 and EZH2 were expressed at median values of 17.5% (range, 0% to 35%) and 20% (range, 0% to 95%), respectively.

Expression of mTOR signaling–related proteins in DAC

The mTOR signaling–related proteins also showed diverse expressions in DAC, as shown in Fig. 2B. DAC cases showed a high expression of PTEN (median, 100%) and a low expression of p-mTOR (median, 15%) and pS6 (median, 15%). Eight cases (13.1%) showed no immunoreactivity for PTEN. 14-3-3 sigma was also expressed variably with a median value of 60% (range, 0% to 100%).

Immunohistochemistry on whole section

Tumor heterogeneity was evaluated by immunohistochemistry using whole sections of one negative case, one intermediate case, and one positive case for each antibody. Although there was a slight variation in the cases of intermediate expression, a great degree of similarity was observed in all cases, especially in negative cases and entirely positive cases (data not shown). PanCK immunohistochemistry on whole sections of all PanCK-negative cases on the TMA construct showed immunopositivity in normal

Table 4. Correlation between expression of mTOR signaling–related proteins and clinicopathological features of DAC

<table>
<thead>
<tr>
<th>p-mTOR</th>
<th>14-3-3 sigma</th>
<th>pS6</th>
<th>PTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>p-value</td>
</tr>
<tr>
<td>No. of cases</td>
<td>46 (75.4)</td>
<td>15 (24.6)</td>
<td>46 (75.4)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>67.8</td>
<td>68.7</td>
<td>.589</td>
</tr>
<tr>
<td>PSA (ng/mL)</td>
<td>11.6</td>
<td>12.0</td>
<td>.883</td>
</tr>
<tr>
<td>GS</td>
<td>.307</td>
<td>.298</td>
<td>.105</td>
</tr>
<tr>
<td>7</td>
<td>15 (32.6)</td>
<td>5 (33.3)</td>
<td>11 (44.0)</td>
</tr>
<tr>
<td>8</td>
<td>20 (43.5)</td>
<td>9 (60.0)</td>
<td>10 (40.0)</td>
</tr>
<tr>
<td>9</td>
<td>11 (23.9)</td>
<td>1 (6.7)</td>
<td>4 (16.0)</td>
</tr>
<tr>
<td>pT</td>
<td>.138</td>
<td>.426</td>
<td>.790</td>
</tr>
<tr>
<td>T2a-c</td>
<td>12 (26.1)</td>
<td>5 (33.3)</td>
<td>8 (32.0)</td>
</tr>
<tr>
<td>T3a</td>
<td>25 (54.3)</td>
<td>4 (26.7)</td>
<td>13 (52.0)</td>
</tr>
<tr>
<td>T3b</td>
<td>9 (19.6)</td>
<td>6 (40.0)</td>
<td>4 (16.0)</td>
</tr>
<tr>
<td>LVI</td>
<td>.813</td>
<td>.730</td>
<td>.737</td>
</tr>
<tr>
<td>Absent</td>
<td>26 (56.5)</td>
<td>9 (60.0)</td>
<td>15 (60.0)</td>
</tr>
<tr>
<td>Present</td>
<td>20 (43.5)</td>
<td>6 (40.0)</td>
<td>10 (40.0)</td>
</tr>
<tr>
<td>Comedonecrosis</td>
<td>.905</td>
<td>.574</td>
<td>.605</td>
</tr>
<tr>
<td>Absent</td>
<td>33 (71.7)</td>
<td>11 (73.3)</td>
<td>19 (76.0)</td>
</tr>
<tr>
<td>Present</td>
<td>13 (28.3)</td>
<td>4 (26.7)</td>
<td>6 (24.0)</td>
</tr>
<tr>
<td>Positive RM</td>
<td>.224</td>
<td>.076</td>
<td>.904</td>
</tr>
<tr>
<td>Absent</td>
<td>17 (37.0)</td>
<td>3 (20.0)</td>
<td>5 (20.0)</td>
</tr>
<tr>
<td>Present</td>
<td>29 (63.0)</td>
<td>12 (80.0)</td>
<td>20 (80.0)</td>
</tr>
<tr>
<td>LN metastasis</td>
<td>.310</td>
<td>.782</td>
<td>.919</td>
</tr>
<tr>
<td>Absent</td>
<td>43 (93.5)</td>
<td>15 (100)</td>
<td>24 (96.0)</td>
</tr>
<tr>
<td>Present</td>
<td>3 (6.5)</td>
<td>0</td>
<td>1 (4.0)</td>
</tr>
</tbody>
</table>

Values are presented as number (%) or median (range).

Cut-off for each protein is as follows: ≥40% for high expression of p-mTOR, < 80% for loss of 14-3-3 sigma, ≥10% for high expression of pS6, and < 85% for loss of PTEN.

mTOR, mammalian target of rapamycin; DAC, ductal adenocarcinoma; p-mTOR, phospho-mammalian target of rapamycin; pS6, phospho-S6 ribosomal protein; PTEN, phosphatase and tensin homolog; PSA, prostate-specific antigen; GS, Gleason score; pT, pathologic tumor stage; LVI, lymphovascular invasion; RM, resection margin; LN, lymph node.
prostatic glands and AAC areas as shown in Fig. 3. However, PanCK was negative in eight cases among the nine cases; one case showed focal (15%) immunopositivity on the whole section. Therefore, technical problems were not an issue and the immunohistochemical data using the TMA construct were confirmed to be representative.

Correlation of protein expression with clinicopathological features

To define the prognostic significance of the prostate cancer-related proteins and mTOR signaling–related proteins, a cut-off expression value of each protein was determined according to the ROC curve analysis for BCR (Tables 3, 4). The correlation between expressions of prostate cancer-related proteins or mTOR signaling–related proteins and clinicopathological features are summarized in Tables 3 and 4, respectively.

Low expression of PanCK was associated with high pT (p = .044), whereas high GS was associated with low expressions of PSA and AR (p = .006 and p = .025, respectively) and high expression of p53 (p = .015). DAC cases with lymphovascular invasion showed high expressions of ERG, p53, and EZH2 (p = .039, p = .030, and p = .025, respectively) and low expression of PSA (p = .041).

Prognostic factors for BCR in DAC

As shown in Table 5, among the clinicopathological features, the univariate analysis showed that BCR was associated with high preoperative serum PSA level (p < .001), large tumor volume (p < .001), predominant ductal component (p = .021), high GS (p = .004), comedo-necrosis (p = .015), high pT (p = .010), lymphovascular invasion (p = .002), and positive surgical margin (p = .015). Among the protein expressions, high expressions of p-mTOR and low expression of PSA and pS6 were associated with BCR (p = .049, p = .022, and p = .033, respectively). Low expression of PanCK showed borderline significance (p = .055). On multivariable analysis, high GS (p < .001), high pT (p = .025), low expression of PanCK (p = .007), and high expression of p-mTOR (p = .002) remained independent prognostic factors for BCR. The Kaplan-Meier survival curves of these four independent prognostic factors are shown in Fig. 4.

DISCUSSION

Herein, we analyzed the clinicopathological features and immunoprofile of 61 cases of DAC. The results suggest GS, pT stage, and immunohistochemical expressions of PanCK and p-mTOR as independent prognostic factors for BCR. DAC demonstrated wide expression ranges of prostate cancer–related proteins, which should be recognized during interpretation of immunohistochemical results of DAC. Since DAC demonstrated diverse expression of mTOR-related proteins, these results cautiously suggest their potential utility as predictive markers for mTOR-targeted therapy.

Although previous studies regarding the immunohistochemical expression of DAC exist, they analyzed a small number of cases and mostly focused on PSA and a few other prostate cancer-related proteins.8–17 Furthermore, they mostly presented the results as
positive, focally positive, or negative without an accurate range of expression. One recent study analyzed a large number of cases (n = 60) and showed high expressions of AR, PSA, and PTEN and low expression of ERG in 100%, 100%, 70.2%, and 38.3% of DAC cases, respectively. Nevertheless, this present study is significant because of the detailed description of the expression range of each protein and the assessment of mTOR pathway–associated protein in DAC for the first time. Furthermore, we identified independent prognostic factors for BCR in DAC: GS, pT, and immunohistochemical expressions of PanCK and p-mTOR.

On light microscopic examination, histologic differences are apparent between DAC and AAC, but it appears that they are similar at the molecular level as assessed by gene expression profile. In line with this notion, DAC cases in this study showed high expression of AR and low expression of p53, similar to AAC. PanCK and PSA are drawing special attention among the prostate cancer-related proteins. Even though PanCK and PSA have been proven useful as an epithelial marker and a prostate lineage marker, respectively, the present study showed that they were expressed heterogeneously, including nine cases (14.8%) of PanCK-negative ones and two cases (3.3%) of PSA-negative ones. Previous studies showed that AAC was also focally positive or even negative for PanCK and PSA in a few cases (3.4% and 2%–7%, respectively), similar to DAC in present study. Therefore, it is worth noting that both DAC and AAC could be focally positive and even negative for PanCK and PSA, especially in metastatic disease.

In AAC, fusions between the androgen-regulated transmembrane protease serine 2 gene (TMPRSS2) and the ERG gene are

Fig. 3. Pan-cytokeratin (PanCK) immunohistochemistry on whole section slides. All nine cases of PanCK-negative on tissue microarray (TMA) were immunostained for PanCK on whole section, and then their scan view images were presented. PanCK was still negative in eight cases (A–H) on the whole sections except one case (I), which showed focal (15%) immunopositivity (ductal adenocarcinoma, blue line; acinar adenocarcinoma component, red line; normal prostate glands, black line; round empty space, TMA site).
present in approximately 40%–50% of cases, where ERG immunohistochemistry correlates well with fusion-positive cancer. In the Korean population, the ERG-positive rate by immunohistochemistry was 24.4%, which is lower than those of Western population-based studies. Interestingly, Japanese population-based studies also showed low ERG-positive rates, similar to Korean population. These findings suggest that geographic variation may contribute to the lower rates of ERG-positive cases in Eastern Asian prostate cancer patients. Since only seven cases (11%) were positive for ERG in the present study, it appears that the ERG-positive rate is even lower in DAC than in AAC.

EZH2 is the catalytic subunit of the polycomb repressive complex (PRC2) responsible for conducting histone methylation. It is important in cell cycle regulation and has a role in tumor cell proliferation and invasive growth. High expression of EZH2 in AAC has been associated with aggressive clinicopathological features, such as GS ≥ 8, extraprostatic extension, positive surgical margins, and BCR. In contrast to AAC, EZH2 expression was not associated with BCR in DAC by univariate and multivariable analyses, although it was correlated with poor prognostic clinicopathological features, such as comedo-necrosis, high pT, and lymphovascular invasion.

The mTOR pathway responds to diverse environmental cues, such as amino acids, stress, oxygen, energy, and growth factors, and it controls many biologic processes that generate or use large amounts of energy and nutrients. mTOR signaling impacts most major cellular functions, giving it an important role in regulating basic cellular behaviors, such as cellular growth and proliferation. Overactivation of mTOR signaling contributes to the initiation and development of many types of cancers, including prostate cancer, suggesting that mTOR inhibitors, such as sirolimus, everolimus, and temsirolimus, might lead to an improved patient survival. However, the identification of biomarkers that predict which tumors will respond to mTOR inhibitors remains an unmet need.

Table 5. Univariate and multivariable analyses of the effect of clinicopathological factors and immunohistochemical markers on biochemical recurrence

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>Multivariable analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>1.01</td>
<td>0.941–1.083</td>
</tr>
<tr>
<td>Preoperative PSA (ng/mL)</td>
<td>1.06</td>
<td>1.038–1.094</td>
</tr>
<tr>
<td>Total tumor volume (%)</td>
<td>1.02</td>
<td>1.013–1.047</td>
</tr>
<tr>
<td>Predominant component (ductal)</td>
<td>2.79</td>
<td>1.171–6.664</td>
</tr>
<tr>
<td>Gleason score</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>Pathologic tumor stage</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>T2a-c</td>
<td>5.40</td>
<td>1.205–24.190</td>
</tr>
<tr>
<td>T3b</td>
<td>10.19</td>
<td>2.237–46.400</td>
</tr>
<tr>
<td>Comedonecrosis</td>
<td>2.61</td>
<td>1.202–5.702</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>3.72</td>
<td>1.618–6.065</td>
</tr>
<tr>
<td>Positive surgical margin</td>
<td>4.47</td>
<td>1.341–14.930</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td>0.61</td>
<td>0.082–4.624</td>
</tr>
<tr>
<td>PanCK (high expression)</td>
<td>0.45</td>
<td>0.202–1.016</td>
</tr>
<tr>
<td>ERG (high expression)</td>
<td>1.62</td>
<td>0.382–6.931</td>
</tr>
<tr>
<td>p53 (high expression)</td>
<td>2.08</td>
<td>0.938–4.621</td>
</tr>
<tr>
<td>AR (high expression)</td>
<td>0.72</td>
<td>0.291–1.821</td>
</tr>
<tr>
<td>EZH2 (high expression)</td>
<td>2.01</td>
<td>0.901–4.490</td>
</tr>
<tr>
<td>PSA (high expression)</td>
<td>0.36</td>
<td>0.151–0.861</td>
</tr>
<tr>
<td>p-mTOR (high expression)</td>
<td>2.26</td>
<td>1.004–5.117</td>
</tr>
<tr>
<td>14-3-3 sigma (loss of expression)</td>
<td>1.45</td>
<td>0.633–3.356</td>
</tr>
<tr>
<td>pS6 (high expression)</td>
<td>0.43</td>
<td>0.199–0.935</td>
</tr>
<tr>
<td>PTEN (loss of expression)</td>
<td>0.68</td>
<td>0.302–1.532</td>
</tr>
</tbody>
</table>

HR, hazard ratio estimated by Cox proportional hazards regression model; CI, confidence interval of the estimated HR; PSA, prostate-specific antigen; PanCK, pan-cytokeratin; ERG, ETS-related gene; AR, androgen receptor; EZH2, enhancer of zeste homolog 2; p-mTOR, phospho-mammalian target of rapamycin; pS6, phospho-S6 ribosomal protein; PTEN, phosphatase and tensin homolog.
As one of the diverse upstream regulators of the mTOR pathway, PTEN encodes a phosphatase that dephosphorylates phosphatidylinositol-3,4,5-trisphosphate (PIP3), a second messenger in the PI3K–protein kinase B (PKB) signaling pathway. By negatively regulating the PI3K/PKB signaling pathway, it functions as a tumor suppressor. PTEN loss activates PI3K, which then activates not only mTOR complex 1 (mTORC1) by activating AKT, but also mTORC2 directly. The mTORC1 and mTORC2 complexes are composed of mTOR and several common and unique proteins, allowing those different sensitivities to upstream regulators and diverse downstream output. Many stresses, including low energy and oxygen levels and DNA damage, act through tuberous sclerosis 1 (TSC1) and 2 (TSC2), which are key upstream regulators of mTORC1. Adenosine monophosphate-activated protein kinase (AMPK), in response to hypoxia or a low energy state, phosphorylates TSC2 and communicates directly with mTORC1, leading to 14-3-3 binding. The binding of 14-3-3 proteins, including 14-3-3 sigma on mTORC1, may promote mTORC1 signaling under growth factors, but also contributes to the regulatory mechanisms that suppress mTORC1 activity under conditions of cell stress. mTORC1 also directly phosphorylates and activates ribosomal S6 kinase 1 (S6K1), of which the target substrate is the S6 ribosomal protein (pS6), which has been used as a surrogate for mTORC1 activity.

Few studies have been conducted on the mTOR signaling...
pathway as a predictive marker in prostate cancer. In a clinical study to evaluate everolimus in castration-resistant prostate cancer, probably AAC type, deletion of PTEN assessed by fluorescence in situ hybridization was found in seven of 23 tumor samples and associated with longer progression-free survival and response. However, they argued that immunohistochemical expressions of PTEN, pS6, p-mTOR, and ERG were not predictive. To the best of our knowledge, the present study is the first one to assess mTOR pathway-associated proteins in DAC where mTOR-related proteins are diversely expressed. Therefore, it would be interesting to define the usefulness of these proteins as predictive markers of mTOR inhibitors in DAC.

Although our present study examined a relatively large number of DAC cases, it had some limitations, including its retrospective design and the fact that all patients came from a single institution. Most cases were combined with AAC but the AAC component was not evaluated for immunohistochemical expression of prostate cancer- and mTOR signaling–related proteins. Since this present study showed GS, pT stage, and immunohistochemical expressions of PanCK and p-mTOR as independent prognostic factors, multi-institutional studies are necessary to validate the clinical utility of the results. Furthermore, remarkable advances in investigational tools, such as genomic microarray technologies and next-generation sequencing, may help find novel prognostic and predictive biomarkers. Therefore, efforts should be made to identify more accurate markers by integrating newly discovered biomarkers. Although mTOR-related proteins were cautiously suggested as immunohistochemical predictive markers for mTOR inhibitors, this result should be confirmed by immunohistochemical staining on whole section. It is also obvious that the assumption is still premature and should be investigated through a prospective clinical study.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1A2A2A01006958).

REFERENCES
14. Oxley JD, Abbott CD, Gillatt DA, Maciver AG. Ductal carcinomas of the prostate: a clinicopathological and immunohistochemical
Acid-Fastness of Histoplasma in Surgical Pathology Practice

Madhu Rajeshwari · Immaculata Xess1
Mehar Chand Sharma · Deepali Jain

Departments of Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi, India

Received: May 10, 2017
Revised: June 27, 2017
Accepted: July 11, 2017

Corresponding Author
Deepali Jain, MD, DNB, FIAC
Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
Tel: +91-9868895112
Fax: +91-11-26588603
E-mail: deepalijain76@gmail.com

Histoplasmosis (HP) is a major systemic fungal infection caused by two varieties of Histoplasma. H. capsulatum var. capsulatum, which causes the classic form of the disease, and var. duboisii, which causes African HP. Despite the availability of serological and molecular tests, the gold standard for the diagnosis of the majority of fungal infections is demonstration of the organisms, either in tissue sections/aspirate smears, or by culture. However, fungal culture is time consuming (a minimum of 15 days for Histoplasma) and the materials for culture may not be available in all cases. Hence, histochemical staining for fungi can play a pivotal role in the timely diagnosis of fungal infections.

Gomori methenamine silver (GMS) and periodic-acid Schiff (PAS) are the two most commonly used broad-spectrum fungal stains in routine histopathology practice. These stains help to distinguish fungi based on morphologic characteristics such as size, type of budding, presence of hyphae, and branching. Histoplasma are characterized as 2–4 μm in size with round to oval uninucleate yeast cells that may show narrow-based budding. A clear space or artificial halo may be apparent around the microorganisms due to retraction of the basophilic fungal cell cytoplasm from the poorly stained cell wall. They are usually intracellular, clustered within the histiocytes. Nonetheless, other yeast forms of similar size may be difficult to discriminate from one another. Histoplasma may be confused with capsule deficient Cryptococcus neoformans, Candida glabrata, Leishmania donovani, Penicillium marneffei, Sporothrix schenckii, the small form of Blastomyces dermatitidis and endospores of Coccidioides spp.

Narrow spectrum fungal stains can help to solve the differentiation and identification problem of yeasts, the most well known being the mucicarmine stain, Alcian Blue and Fontana-Masson stains for Cryptococcus, and Congo red for Blastomyces. The Ziehl-Neelsen (ZN) stain, commonly used to identify the mycobacteria, is a less known narrow spectrum fungal stain. Although the acid-fast property of Histoplasma was identified decades ago, it has never been used routinely for the diagnosis of HP. We propose that ZN staining can be used for the identification of fungal organisms, especially Histoplasma. Here, we aimed to examine acid-fastness in previously diagnosed cases of Histoplasma by ZN staining and the results were compared with PAS and GMS stains. We also stained 10 cases each of Leishmania and Cryptococcus infection.
Acid Fastness of Histoplasma

the two most common morphologic mimickers, as controls for the ZN stain.

MATERIALS AND METHODS

All cases of HP diagnosed between 2010 and 2016 were retrieved from the Department of Pathology archives. The study was approved by the Institutional Ethics Committee (No. IEC-564/2.12.2016) and performed in accordance with the principles of the Declaration of Helsinki. Written informed consents were obtained. Hematoxylin and eosin, PAS, and GMS stained slides were reviewed and diagnosis reconfirmed. Cases with adequate tissue in paraffin blocks were selected and a modified ZN staining procedure was performed by the Kinyoun method. The acid-fastness of fungi was characterized in the ZN stains in all the cases.

The modified ZN staining procedure (Kinyoun method) was performed as follows. Paraffin-embedded sections were deparaffinized with xylene, rehydrated with graded concentrations of alcohol, and brought to water. The slides were flooded with carbol fuchsin for 30 minutes, washed, and then decolorized with 1% acid alcohol. The slides were then counterstained with 1% methylene blue. The number of ZN-positive yeasts was counted per 100 identified yeast cells. For comparison, ZN staining was performed in selected cases diagnosed as cryptococcosis (n = 10) and leishmaniasis (n = 10) and the results were compared with cases of HP. There were no cases of coccidioidomycosis or blastomycosis in our archive for comparison.

RESULTS

There were a total of 66 tissue samples from 54 patients diagnosed with HP during the study period. Adequate tissue for ZN staining was available only in 43 samples from 37 patients. Patients (33 men, four women) had an age range of 11 to 69 years. All of the specimens were from biopsies except for one case of intestinal resection. Culture/serology details were available in 18 cases, of which eight (44%) were positive. For rest of the cases, morphology was taken as the gold standard method of diagnosis. Immune status was known in 31 cases, of which 11 (35.5%) were immunocompromised with human immunodeficiency virus (HIV) infection and diabetes as the most common causes of immunosuppression. The most common sample site was the skin (37%) followed by adrenal tissue (23%) and the respiratory tract (11.6%, Table 1). Apart from the lungs, there was involvement of the nasopharynx, vocal cords, and trachea in one case each. Miscellaneous sites of involvement included bone marrow (n = 3), buccal mucosa (n = 1), tongue (n = 1), orbit (n = 1), lymph node (n = 1), ileum (n = 1), and retroperitoneum (n = 1). Fever, weight loss, pancytopenia and molluscum-like papules were common clinical presentations. Some of the rare presentations included subacute intestinal obstruction with ileal perforation, ulcerative lesion in the tongue mimicking a vesiculobullous lesion, tumor-like growth in the trachea and nasopharyngeal involvement in one case each. Twelve cases had disseminated disease (52.4%), four of which had more than one tissue sample available. Adrenal, skin, and bone marrow involvement were common in these disseminated cases. Two of the patients with disseminated HP were immunosuppressed (HIV-positive). Both of these cases had a rapid clinical course, which was fatal in one case.

Of the 43 samples, 20 (46.5%) stained positive with the ZN procedure. The number of yeasts that showed positivity varied from less than 1% to 20% (Fig. 1A–D). Among the eight culture positive cases that showed ZN positivity, four exhibited ZN-positive staining. On morphology, four cases showed entirely necrotic tissue. In comparison to the entirely necrotic cases, viable cases showed more ZN-positive microorganisms. Out of the four necrotic cases, only one case showed ZN-positive yeasts. In comparison to PAS and GMS stains, ZN-positive yeasts were low in burden (Figs. 2A–C, 3A, B).

In contrast to Histoplasma, the cryptococcal yeasts displayed a peculiar staining pattern (Fig. 4A, B) where the capsule and cell wall stained a granular magenta to purple color. This pattern of staining could easily be differentiated from the crisp bright pink cytoplasmic staining of Histoplasma. Almost all of the yeasts in all of the cases stained uniformly, which made the cells easy to identify.
even under low power objective microscopy. None of the cases of leishmaniasis showed positivity for ZN staining.

DISCUSSION

HP, initially thought to be endemic in the Eastern USA and Latin America, is being increasingly recognized in Asian countries like India with the majority of cases being reported from Eastern and North-Eastern regions. A total of 38 cases were reported from India until 1996. Another series from India reported 24 cases during a span of 10 years. Because our hospital is a tertiary institute, we recorded 54 cases in six years, making it the largest...
Acid Fastness of Histoplasma

A large increase in cases indicates that the incidence of HP is increasing in India in recent times. HP is no longer a disease of immunocompromised patients; in our series, only one-third of the patients had a known risk factor.

Classic diagnostic methods include microscopy, culture, antigen detection by enzyme immunoassay, antibody detection by complement fixation and immunodiffusion, and polymerase chain reaction assays. The gold standard methods for the diagnosis of HP includes the demonstration of yeasts on microscopy and isolation of the mold by culture. Although culture of the organism should always be sought and attempted, it is most effective only in cases of high fungal burden with chronic or disseminated forms of HP and culturing is often insensitive in sub-acute, acute, and mild forms of HP.

Table 2. Morphological mimics of Histoplasma

<table>
<thead>
<tr>
<th>Morphological mimic</th>
<th>Differentiating feature(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule deficient Cryptococcus</td>
<td>Size variation, weak positivity for mucin stains and positivity for FM stain; acid fast (present study)</td>
</tr>
<tr>
<td>Leishmania</td>
<td>Presence of kinetoplast</td>
</tr>
<tr>
<td>Small variant of Blastomyces</td>
<td>Broad-based budding</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>Presence of pseudohyphae</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>More size variability, neutrophilic reaction</td>
</tr>
<tr>
<td>Penicillium marneffei</td>
<td>Presence of transverse septum</td>
</tr>
<tr>
<td>Endospores of Coccidioides</td>
<td>Presence of intact/ruptured spherules</td>
</tr>
<tr>
<td>Histoplasma</td>
<td>Round to oval intracellular yeasts with narrow based budding and surrounded by a halo, acid-fast ZN positive</td>
</tr>
</tbody>
</table>

FM, Fontana Masson; ZN, Ziehl-Neelsen.
logical examination an easy, rapid, and reliable diagnostic method.9

We have used morphology as the gold standard for the diagnosis of HP where cultures were negative or unavailable. *Histoplasma* are characterized as 2–4 μm in size with round to oval uninucleate cells that are usually surrounded by a halo. However, many similar sized yeast varieties may be difficult to differentiate from *Histoplasma* (Table 2).

Parsons and Zarafonetis10 first observed acid-fastness in *Histoplasma* as early as 1945, even before the discovery of GMS. Rawson11 also found that the acid-fast property could be advantageously used to search for *Histoplasma*. Although acid-fastness of *Histoplasma* came to light decades ago, its utility in routine diagnostic practice has not been explored. In our study, nearly 46.5% of the samples were positive for ZN staining. The number of yeasts that were acid-fast varied from less than 1% to 20%. This is consistent with the one previous study available, where the authors noted that 47% of *Histoplasma* cases were acid-fast.12 Similarly, only a few to one-third of yeast forms showed this property in their study as well as our previous reported case included in this series.12,13 Until now, none of the fungi other than *Histoplasma* and *Blastomyces* were known to be acid-fast, and this property can be used to advantage in severely necrotic cases where the yeast forms may be scant and may be erroneously diagnosed as other common diseases like tuberculosis (TB). This is especially important in TB endemic countries such as India where we receive most of the cases of TB in routine practice and ZN staining is commonly performed for the diagnosis of TB. Therefore, knowledge about the ZN positivity of *Histoplasma* may be beneficial in recognizing yeast forms in necrotic cases of HP.

Acid-fast microorganisms are characterized by wax-like, nearly impermeable cell walls that contain mycolic acid and large amounts of fatty acids and complex lipids. Treatment with hot hydrochloric acid abolishes the acid-fastness of *Histoplasma*, suggesting that this property of *Histoplasma* is likely due to the presence of mycolic acid in the cell wall. However, *Blastomyces* resist this decolorization, signifying that fatty acids other than mycolic acid are responsible for acid-fastness.12 We use a modified ZN stain in our laboratory for the diagnosis of TB and leprosy in routine services where the concentration of phenol (mordent) in carbol fuchsin was increased from 5% to 8%, which contributes to better stain penetration.

The acid-fastness of *Histoplasma* could not be demonstrated in cytology smears in our previous study.14 Instead, *Histoplasma* yeasts were identified easily against the pale background of ZN stain in necrotic cases. However, the case numbers were too small to draw any conclusions and more studies are needed on aspirate smears. We have also observed the peculiar pattern of positivity of cryptococcal yeasts with the ZN stain. To the best of our knowledge, this finding has not been reported previously. In contrast to *Histoplasma*, almost all of the yeasts showed uniform positivity, making it one of the most sensitive and specific stains for the identification of cryptococci. Since the pattern of ZN positivity is different, this feature might also help to differentiate *Cryptococcus* and *Histoplasma* in combined infections, which is relatively common in immunosuppressed hosts. Endospores of *Coccidioides* resemble those of *Histoplasma*; however, we do not see *Coccidioides* in India so the comparison could not be made in this study.

In conclusion, this study is one of the largest series of HP where the acid-fastness of *Histoplasma* was evaluated. A comparative analysis of *Cryptococcus* and *Leishmania* revealed a different pattern of acid-fastness. Although morphology is the basis of fungal identification, a simple ZN stain may be included in the diagnostic armamentarium for fungal infections in surgical pathology. Although every organism is not acid-fast within a single case, approximately half of HP cases are positive on ZN staining. The difference in ZN positivity staining pattern between *Histoplasma* and *Cryptococcus* may serve as a useful distinguishing feature. Surgical pathologists should be aware of the acid-fast property of fungal organisms, which will be helpful in the correct identification of the microorganism and ultimately patient management in morphologically-challenging HP cases.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The abstract of the same work has been accepted for presentation in 2017 USCAP Annual Meeting; 4–10 Mar 2017; San Antonio, TX, USA.

REFERENCES

4. Youngberg GA, Wallen ED, Giorgadze TA. Narrow-spectrum histo-
Placental Lesions in Meconium Aspiration Syndrome

Binnari Kim1 · Soo-young Oh2
Jung-Sun Kim1,3

Background: Meconium aspiration syndrome (MAS) is defined by respiratory distress requiring supplemental oxygen in a meconium-stained neonate. MAS is clinically subclassified as mild, moderate, and severe according to the oxygen requirement. The aims of this study were to compare the histological findings in the placentas of MAS neonates with those of meconium-stained but non-MAS neonates and to analyze the correlation between the severity of MAS and the grade of its histological parameters. Methods: We collected 160 singleton term placentas from neonates with meconium staining at birth from a tertiary medical center, Seoul, Republic of Korea. We reviewed hematoxylin and eosin sections of tissue samples (full-thickness placental disc, chorioamniotic membranes, and umbilical cord). Results: Funisitis was present more frequently in MAS than in non-MAS (p < .01), of which the stage was correlated with the severity of MAS (p < .001). The histological findings consistent with maternal underperfusion and chronic deciduitis were more frequent in MAS than in non-MAS (p < .05). There was a correlation between the degree of chorionic vascular muscle necrosis and the severity of MAS (p < .05). Conclusions: Our results suggest that fetal inflammatory response evidenced by funisitis occurs prenatally in MAS and that the stage of funisitis and of chorionic vascular muscle necrosis may be a predictive marker of the severity of MAS.

Key Words: Placenta; Meconium; Meconium aspiration syndrome; Chorioamnionitis; Chorionic vascular muscle necrosis

Meconium-stained neonates are quite common, accounting for about 10% to 16% of term pregnancies, in which a minority of cases suffer from respiratory distress requiring supplemental oxygen.1–4 These cases are called meconium aspiration syndrome (MAS), occurring in 2% to 36% of meconium-stained neonates.5,6 MAS is clinically subclassified as mild, moderate, and severe, according to the degree of respiratory distress and treatment requirements. In the past, the whole spectrum of MAS was considered as a group of diseases caused by meconium aspiration, but more recently it is understood that severe MAS is pathophysiologically different from mild and moderate MAS.7 The time and amount of meconium exposure are not correlated to the severity of MAS.8,9 The risk factors of severe MAS do not show a linear extension with those of mild and moderate MAS.7 Moreover, the histologic and physiologic changes in severe MAS cases cannot be explained by aspiration of meconium per se.10,11 Rather, it is proposed that severe MAS results from chronic asphyxia or infection accompanying meconium passage and lung damage.5

The placenta is an organ that connects the fetus to the uterus of the mother, thus providing the fetus with a safe environment rendering gas exchange and waste elimination. In a sense, the placenta is a unique organ that mirrors the status of a fetus and mother during pregnancy. For example, when the placental membranes are ruptured and amniotic fluid infection occurs, the placenta shows acute chorioamnionitis (as the maternal inflammatory response) and funisitis (as the fetal inflammatory response).12 When the placenta does not carry adequate oxygen and nutrition for the fetus due to maternal underperfusion such as preclampsia, the placental villi show increased syncytial knots, villous agglutination, intervillous fibrin, and distal villous hypoplasia, while maternal vessels in the decidua disclose atherosclerosis or mural hypertrophy of the arterioles.13 In contrast, the vascular thrombo-occlusion of a fetal origin is evidenced by avascular villi and villous stromal-vascular karyorrhexis accompanied by thrombus or intimal fibrin cushion of fetal vessels in the placenta.14 Meanwhile, meconium-laden macrophages in the placenta are usually considered to be indicators of the meconium passage in utero.15 In addition, acute chorioamnionitis, funisitis, chorionic vascular muscle necrosis, and amnion degeneration are accompanied by meconium exposure.10,11,16

MAS is one of the significant causes of neonatal respiratory
distress leading to various morbidities and mortality.18,19 It is critical to know the risk factors of MAS, especially the severe one, as soon as possible before and/or after birth to manage a neonate predisposed to MAS. In order to find histopathological findings in the placenta to predict the occurrence and severity of MAS, we evaluated the histopathological findings in placentas from the MAS neonates, compared them with those from the meconium-stained but non-MAS neonates, and analyzed any correlation between the severity of MAS and the grade of the histological parameters.

MATERIALS AND METHODS

Among singleton term neonates with meconium staining at birth (n = 835) from all live deliveries (n = 16,264) in our institution from January 2006 to June 2014, a total of 160 cases whose placentas were available for histological examination were included in this retrospective study. The study was approved as a retrospective study without informed consent by the institutional review board of the hospital (2011-07-063). Multiple gestation, fetal deaths in utero, or other major anomalies were excluded. Clinical characteristics of the study population were reviewed in three categories: (1) maternal factors (age, parity, gestational age at delivery, mode of delivery); (2) neonatal factors (weight, sex, presence of fetal growth restriction, Apgar score, grade of meconium staining, neonatal intensive care unit admission and duration, arterial blood gas analysis of cord blood); and (3) intrapartum factors (presence of fever [≥ 38°C], rupture of membrane to delivery interval, oligohydramnios, use of labor epidural anesthesia, use of oxytocin, and fetal heart rate patterns). MAS was classified as follows: mild, requiring < 40% oxygen for < 48 hours; moderate, requiring ≥ 40% oxygen for at least 48 hours; or severe, requiring assisted mechanical ventilation for more than 48 hours.10,16

The tissue samples (the placental disc in full thickness, a cross section of the umbilical cord, and a roll of the chorioamniotic membranes) were fixed in 10% formalin and embedded in paraffin. The tissue sections stained with hematoxylin and eosin were reviewed by a pathologist who was blind to the clinical information. Placental histologic findings were categorized as those associated with amniotic fluid infection, maternal underperfusion, and fetal vascular obstructive lesions, according to the criteria proposed by the perinatal section of the Society for Pediatric Pathology.12-14

Comparison of the histopathologic findings between MAS and non-MAS

Among the findings associated with amniotic fluid infection, acute funisitis was more frequent in MAS than in non-MAS placentas (65.9% [27/41] vs 39.5% [47/119], p < .01). There was no significant difference in the frequency of acute chorioamnionitis between MAS and non-MAS placentas (58.5% [24/41] vs 47.9% [57/119], p > .05). The findings associated with maternal underperfusion were detected more frequently in MAS than in non-MAS placentas (31.7% [13/41] vs 15.1% [18/119], p < .05), but the frequency of the findings associated with fetal vascular thrombo-occlusive disease was not significantly different.
Fig. 1. Representative histological findings of the placenta. (A) Acute chorioamnionitis. (B) Funisitis. (C) Increased syncytial knots. (D) Chronic villitis. (E) Chronic deciduitis. (F) Chorionic vascular muscle necrosis.
between MAS and non-MAS placentas (0% [0/41] vs 7.6% [9/119], p > .05). Neither chronic villitis nor chronic choioamnionitis was not increased in MAS placentas compared to non-MAS placentas (12.2% [5/41] vs 5.9% [7/119], 12.2% [5/41] vs 7.6% [9/119], p > .05), whereas chronic deciduitis showed a higher frequency in MAS than in non-MAS cases (7.3% [3/41] vs 0% [0/119], p < .05). The frequencies of meconium-laden macrophages, amnion degeneration, and chorionic vascular muscle necrosis were not related to MAS (95.1% [39/41] vs 96.6% [114/118], 91.3% [21/23] vs 97.3% [72/74], and 10.3% [4/39] vs 10.4% [11/106], respectively, p > .05) (Fig. 2).

Correlation between the severity of MAS and the grade of the placental histological findings

We analyzed the correlation between the severity of MAS and the grade of pathological findings and found out that the grade of funisitis and that of chorionic vascular muscle necrosis were higher as the severity of MAS increased (p < .001 and p < .05, respectively). Other parameters including acute choioamnionitis, maternal underperfusion, and meconium-laden macrophages did not show any significant correlation with the severity of MAS (Fig. 3).

DISCUSSION

This study demonstrated that acute funisitis, histological findings associated with maternal underperfusion, and chronic deciduitis were frequently found in MAS. The grade of funisitis and chorionic vascular muscle necrosis was correlated with the severity of MAS.

Funisitis, which is characterized by the migration of polymorphonuclear leukocytes from the lumen to the wall of the umbilical vessels, was the most significant histological factor associated with MAS. Funisitis is most commonly associated with intraamniotic infection as is acute choioamnionitis. Acute choioamnionitis represents a maternal inflammatory response to intraamniotic infection, whereas funisitis is an evidence of a fetal inflammatory response and reflects a systemic fetal inflammatory response syndrome. Meconium may induce local inflammation following...
tissue degeneration in the fetal membranes (chorioamnionitis) and umbilical cord (finitis) by its leukotactic activity, but it is less severe than that by intraamniotic infection is.17 Intraamniotic inflammation occurs more frequently in meconium-stained amniotic fluid than in clear amniotic fluid.29-34 The significant association of finitis with MAS but not acute chorioamnionitis, in spite of the presence of both acute chorioamnionitis and finitis in intraamniotic infection/inflammation, suggests that a fetal inflammatory response is crucial to MAS but not a general intraamniotic inflammatory response. It has been proposed that the combination of a local inflammatory response in the lung by meconium and capillary damage/leakage as a manifestation of systemic fetal inflammatory

Table 3. Clinical characteristics in non-MAS and MAS groups

<table>
<thead>
<tr>
<th>Clinical factor</th>
<th>Non-MAS (n = 119)</th>
<th>Mild (n = 33)</th>
<th>p-value</th>
<th>Moderate (n = 4)</th>
<th>p-value</th>
<th>Severe (n = 4)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yr)*</td>
<td>32 (25 to 44)</td>
<td>32 (24 to 37)</td>
<td>> .05</td>
<td>34 (28 to 36)</td>
<td>> .05</td>
<td>34 (26 to 36)</td>
<td>> .05</td>
</tr>
<tr>
<td>Gestational age at delivery (wk)*</td>
<td>40.2 (37.2 to 41.5)</td>
<td>40.3 (37.3 to 41.6)</td>
<td>> .05</td>
<td>40.7 (39.5 to 41.4)</td>
<td>> .05</td>
<td>29.1 (38.2 to 40.1)</td>
<td>> .05</td>
</tr>
<tr>
<td>Primiparity (%)</td>
<td>88</td>
<td>94</td>
<td>> .05</td>
<td>75</td>
<td>> .05</td>
<td>75</td>
<td>> .05</td>
</tr>
<tr>
<td>Mode of delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective C/S (%)</td>
<td>1.7</td>
<td>0</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
</tr>
<tr>
<td>Emergency C/S (%)</td>
<td>54.6</td>
<td>42</td>
<td>75</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal (%)</td>
<td>43.7</td>
<td>58</td>
<td>25</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (male) (%)</td>
<td>53</td>
<td>60</td>
<td>> .05</td>
<td>75</td>
<td>> .05</td>
<td>50</td>
<td>> .05</td>
</tr>
<tr>
<td>Weight (kg)*</td>
<td>3.24 (1.98 to 4.57)</td>
<td>3.04 (1.98 to 4.06)</td>
<td>> .05</td>
<td>3.09 (2.91 to 3.56)</td>
<td>> .05</td>
<td>3.36 (2.6 to 4.4)</td>
<td>> .05</td>
</tr>
<tr>
<td>Growth restriction ≥10p (%)</td>
<td>22</td>
<td>33</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
<td>25</td>
<td>> .05</td>
</tr>
<tr>
<td>Apgar score (1 min) ≤4 (%)</td>
<td>3.3</td>
<td>45</td>
<td>< .001</td>
<td>25</td>
<td>> .05</td>
<td>50</td>
<td>< .001</td>
</tr>
<tr>
<td>Apgar score (5 min) ≤7 (%)</td>
<td>0.8</td>
<td>24</td>
<td>< .001</td>
<td>25</td>
<td>> .05</td>
<td>50</td>
<td>< .001</td>
</tr>
<tr>
<td>Grade of meconium staining (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39.7</td>
<td>30.2</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
<td>25</td>
<td>< .05</td>
</tr>
<tr>
<td>2</td>
<td>21.6</td>
<td>36.4</td>
<td>50</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>27.0</td>
<td>15.2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.7</td>
<td>18.2</td>
<td>50</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICU admission (%)</td>
<td>6</td>
<td>90</td>
<td>< .001</td>
<td>100</td>
<td>< .001</td>
<td>100</td>
<td>< .001</td>
</tr>
<tr>
<td>Duration of admission (day)*</td>
<td>0</td>
<td>5</td>
<td>< .001</td>
<td>3.5</td>
<td>< .001</td>
<td>11</td>
<td>< .001</td>
</tr>
<tr>
<td>Cord pH at birth*</td>
<td>7.27 (6.99 to 7.53)</td>
<td>7.12 (6.85 to 7.29)</td>
<td>< .001</td>
<td>7.24 (7.08 to 7.32)</td>
<td>> .05</td>
<td>7.24 (7.02 to 7.41)</td>
<td>< .001</td>
</tr>
<tr>
<td>< 7.0 (%)</td>
<td>2.3</td>
<td>26.3</td>
<td>< .001</td>
<td>0</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
</tr>
<tr>
<td>< 7.1 (%)</td>
<td>6.8</td>
<td>36.8</td>
<td>< .001</td>
<td>33.3</td>
<td>> .05</td>
<td>25.0</td>
<td>> .05</td>
</tr>
<tr>
<td>< 7.2 (%)</td>
<td>25.0</td>
<td>63.2</td>
<td>< .001</td>
<td>33.3</td>
<td>> .05</td>
<td>50.0</td>
<td>> .05</td>
</tr>
<tr>
<td>Cord blood base excess at birth*</td>
<td>–4.45 (–19.5 to 15)</td>
<td>–10.75 (–3 to –19.9)</td>
<td>< .001</td>
<td>–2.20 (–12.1 to –1.7)</td>
<td>> .05</td>
<td>–6.45 (–15 to –1)</td>
<td>> .001</td>
</tr>
<tr>
<td>Intrapartum factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever ≥38°C (%)</td>
<td>35</td>
<td>57</td>
<td>> .05</td>
<td>66</td>
<td>> .05</td>
<td>50</td>
<td>> .05</td>
</tr>
<tr>
<td>Rupture of membranes to delivery (min)*</td>
<td>316</td>
<td>339.5</td>
<td>> .05</td>
<td>368</td>
<td>> .05</td>
<td>175.5</td>
<td>> .05</td>
</tr>
<tr>
<td>Use of oxytocin (%)</td>
<td>72.5</td>
<td>75</td>
<td>> .05</td>
<td>66</td>
<td>> .05</td>
<td>50</td>
<td>> .05</td>
</tr>
<tr>
<td>Use of epidural anesthesia (%)</td>
<td>81.4</td>
<td>93</td>
<td>> .05</td>
<td>66</td>
<td>> .05</td>
<td>50</td>
<td>> .05</td>
</tr>
<tr>
<td>Oligohydramnios (%)</td>
<td>9</td>
<td>9</td>
<td>> .05</td>
<td>33</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
</tr>
<tr>
<td>Fetal tachycardia (%)</td>
<td>29</td>
<td>60</td>
<td>< .05</td>
<td>33</td>
<td>> .05</td>
<td>50</td>
<td>> .05</td>
</tr>
<tr>
<td>Fetal bradycardia (%)</td>
<td>1</td>
<td>0</td>
<td>> .05</td>
<td>0</td>
<td>> .05</td>
<td>25</td>
<td>> .05</td>
</tr>
<tr>
<td>Minimal fetal heart rate variability (%)</td>
<td>46</td>
<td>70</td>
<td>> .05</td>
<td>33</td>
<td>> .05</td>
<td>75</td>
<td>> .05</td>
</tr>
</tbody>
</table>

MAS, meconium aspiration syndrome; C/S, cesarean section; NICU, neonatal intensive care unit.

aNon-MAS vs mild MAS; bNon-MAS vs moderate MAS; cNon-MAS vs severe MAS; dNon-MAS vs mild MAS vs moderate MAS vs severe MAS; eMedian (range).
response explains the pathogenesis of MAS. Upregulation of adhesion molecules in the umbilical cord was observed in the presence of funisitis, which was thought to result in increased concentrations of cytokines and soluble adhesion molecules in the fetal circulation. Activation of endothelium may affect not only the umbilical cord but also other fetal organs. Funisitis is associated with adverse neonatal outcome including an Apgar score < 7 at 1 minute, small for gestational age and the rate of admission to

Fig. 2. Comparison of the frequencies of histological findings in the placentas between meconium aspiration syndrome (MAS) and non-MAS placentas. (A) Acute chorioamnionitis. (B) Funisitis. (C) Amniotic fluid infection. (D) Maternal underperfusion. (E) Fetal thrombo-occlusive disease. (F) Chronic inflammation. (G) Chronic villitis. (H) Chronic chorioamnionitis. (I) Chronic deciduitis. (J) Meconium-laden macrophages. (K) Amnion degeneration. (L) Chorionic vascular necrosis. VUE, villitis of unknown etiology.
the neonatal intensive care unit. It is also related to various clinical
diseases such as chronic lung disease, intracranial hemorrhage,
cerebral palsy, and negative long-term neurologic outcome.25,35-45
The significant relationship of funisitis with MAS was supported
by previous studies, but our study is the first to demonstrate
the correlation of the severity between funisitis and MAS.19

The histological findings associated with maternal underperfusion
were identified more frequently in MAS than in non-MAS pla-
centas. Maternal blood from the spiral arteries of the basal plate
flows into the intervillous spaces, and the exchange of oxygen
and nutrients occurs with fetal blood in the villi. With maternal
underperfusion, villi are less perfused, resulting in hypoxic damage
and hence increased syncytial knots and villous agglutination.13,46-48
Circulatory stasis due to underperfusion also induces intervillos
tissue fibrin.13,46,47 Long-standing severe hypoxia may result in distal
villous hypoplasia, manifested as decreased number, size, and
branching.13,46,51 Inadequate vascular remodeling and/or structural
abnormality of maternal arteries, including mural hypertrophy
of arterioles and persistent muscularization of arteries in the basal
plate is a known cause of maternal underperfusion such as pre-
eclampsia.13,54-58 Villous ischemic changes were previously mentioned
as a placental finding of MAS, but they were not studied thoroughly.59
Maternal underperfusion is a major risk factor of fetal growth
restriction, preterm rupture of membrane, and preterm labor.13,60-63
Especially, it is frequently related to preeclampsia.13,64 Chronic asphyxia
is one of the possible causes of MAS.7 Preeclampsia and maternal
hypertension which bring about maternal underperfusion are known
as risk factors of MAS.65 Because maternal underperfusion can
lead to pulmonary hypoplasia and immaturity, this situation is
vulnerable to meconium-induced inflammation. Thus, conditions
that can cause maternal underperfusion might increase the risk
of MAS.

Chronic deciduitis is defined as the presence of lymphocytes
and plasma cells in the basal plate of the placenta.21,66 Chronic deciduitis
has been associated with preterm labor and is also related to adverse
outcomes such as intrapartum growth restriction and fetal death.67,68
The etiology of chronic deciduitis is still not clear; however, chronic
microbial infection and immune response to fetus antigen are
thought to be involved.66 The latter is supported by the association
between chronic deciduitis and basal villitis, its presence in the
placenta of pregnancies by egg donation, and the proximity of
the plasma cells to trophoblast cells.66 The relationship between
chronic deciduitis and chronic villitis and chronic chorioamnionitis, which are also representative
of immune response to fetal antigens, does not support the hypothesis.
It requires further studies to clarify.

Chorionic vascular muscle necrosis was frequent in MAS, and
the severity was correlated with that of MAS. Chorionic vascular
muscle necrosis can be diagnosed by observing eosinophilic cytoplasmic
degeneration, nuclear pyknosis, disorganization, and rounding of periph-
neral smooth muscle cells in vessels, resulting from apoptosis
in chorionic vessels by prolonged meconium exposure.69 It is associated
with placental lesions resulting from hypoxia and poor neonatal
outcome, including intrapartum growth restriction, intrapartum
fetal demise, and fetal distress.70
Collectively, our data support that fetal inflammatory response evidenced by funisitis and chorionic vascular muscle necrosis occurs prenatally in MAS. It is unlikely that MAS is simply caused by aspiration of meconium in utero or during the intrapartum period, which is relatively short, because these placental pathologic findings require a certain time period to be raised. Thureen et al.59 reported that MAS is a kind of prenatal disease based on histopathologic pulmonary and placental evidences. Meconium passage normally occurs within the first 24 to 48 hours after birth, especially when the babies are 37 weeks or older. But, it is known to be associated with fetal distress such as hypoxia and infection in near-term or term babies.2 There is also a hypothesis that the fetal swallowing of amniotic fluids containing various factors which evoke inflammation can lead to bowel peristalsis and meconium passage.19 There are a variety of hypotheses on how meconium raises the respiratory distress in neonates. Nitric oxide (NO) has been known to damage lung epithelial cells responding to meconium. As such, Muller et al.71 found that lipopolysaccharide and meconium-induced NO production is positively regulated by DMBT1. Ghidini and Spong5 suggested that alternative mechanisms, such as chronic asphyxia, infection, and acute asphyxia, cause severe MAS that can result in meconium passage in utero and lung damage. There is a possibility that the above mechanisms are causative of both meconium passage and severe MAS, rather than that meconium passage would be a direct cause of severe MAS.5

The limitations of this study include the followings: first, placentas were not collected consecutively from all births, and the placentas from neonates with MAS were enrolled for pathological examination at a higher rate than those without MAS. This selection bias explains the high frequency of MAS and inconsistent statistics of clinical characteristics in this study compared with those reported previously.1-4,7 Second, the relatively small number of moderate and severe MAS cases included may have limited the statistical significance of the results. This is partly supported by that some clinical factors found to be significantly different between mild MAS and non-MAS did not show statistically significant difference between moderate/severe MAS and non-MAS. Further studies with consecutive collection of a larger number of cases could confirm our results and also may find additional placental findings as risk factors.

Our results suggest that fetal inflammatory response evidenced by funisitis occurs prenatally in MAS, and the stage of funisitis and the severity of chorionic vascular muscle necrosis may be predictive markers of the severity of MAS. If meconium staining is detected during delivery and MAS is clinically suspected, the placenta should be fully examined to determine whether these abnormal findings exist and at what stages they are. If the placenta shows high-grade funisitis or extensive chorionic vascular muscle necrosis, the neonate should be treated aggressively from the very beginning to prevent severe MAS.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2012R1A1A3012668), Republic of Korea.

REFERENCES

Intraosseous Hibernoma: A Rare and Unique Intraosseous Lesion

Boram Song1 · Hye Jin Ryu2
Cheol Lee1 · Kyung Chul Moon1,3

Departments of 1Pathology and 2Radiology, Seoul National University College of Medicine, Seoul; 3Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea

Background: Hibernoma is a rare benign tumor of adults that is composed of multivacuolated adipocytes resembling brown fat cells. Hibernoma typically occurs in soft tissue, and intraosseous examples are very rare. Intraosseous hibernomas can radiologically mimic metastatic carcinoma and other tumorous conditions. Methods: To collect the intraosseous hibernomas, we searched the pathologic database and reviewed the hematoxylin and eosin (H&E)–stained slides of bone biopsy samples performed to differentiate radiologically abnormal bone lesions from 2006 to 2016. A total of six intraosseous hibernoma cases were collected, and clinical and radiological information was verified from electronic medical records. H&E slide review and immunohistochemical staining for CD68, pan-cytokeratin, and S-100 protein were performed. Results: Magnetic resonance imaging of intraosseous hibernomas showed low signal intensity with slightly hyperintense foci on T1 and intermediate to high signal intensity on T2 weighted images. Intraosseous hibernomas appeared as heterogeneous sclerotic lesions with trabecular thickening on computed tomography scans and revealed mild hypermetabolism on positron emission tomography scans. Histopathologically, the bone marrow space was replaced by sheets of multivacuolated, foamy adipocytes resembling brown fat cells, without destruction of bone trabeculae. In immunohistochemical analysis, the tumor cells were negative for CD68 and pan-cytokeratin and positive for S-100 protein. Conclusions: Intraosseous hibernoma is very rare. This tumor can be overlooked due to its rarity and resemblance to bone marrow fat. Pathologists need to be aware of this entity to avoid misdiagnosis of this rare lesion.

Key Words: Hibernoma; Bone neoplasms; Pathology; Immunohistochemistry

MATERIALS AND METHODS

Cases and clinicopathologic information

The pathologic database of the Department of Pathology, Seoul National University Hospital, from 2006 to 2016 was searched with the keywords of hibernoma or brown fat, and three intraosseous hibernomas were found.

We also reviewed the hematoxylin and eosin (H&E)–stained slides of bone biopsy cases with radiologic and clinical impressions of bone marrow involvement of metastatic carcinoma, lymphoma, chronic osteomyelitis, and hemangioma cases between 2006 and 2016, and three additional intraosseous hibernoma cases were newly identified.

A total of six cases were included in this study. In all cases, the bone biopsy was performed with a 14-gauge core needle under computed tomography (CT) or fluoroscopy guidance. We reevaluated the H&E slides to confirm the adequacy of the initial diagnosis and to analyze the various pathological features. Imaging studies were also reviewed by the musculoskeletal radiologist. The corresponding clinical data were obtained from the patient's...
medical records.

This study was approved by the Institutional Review Board (IRB) of Seoul National University Hospital (H-1611-004-803). The informed consent was waived by IRB.

Immunohistochemical staining

Immunohistochemical (IHC) staining for S-100 protein (Dako, Santa Clara, CA, USA), cytokeratin (Dako) and CD68 (Dako) was performed on formalin-fixed, paraffin-embedded tissue for all cases to validate the diagnosis of hibernoma. All IHC analyses were performed using the Ventana Benchmark XT automated staining system (Ventana Medical Systems, Tucson, AZ, USA).

RESULTS

Clinical and radiologic features

The clinical and radiologic features of the six patients are summarized in Table 1. The patients’ ages ranged from 45 to 71 years. Three patients were male, and three were female. Five of six cases occurred in the axial skeleton; two in a thoracic vertebral body, two in a lumbar vertebral body, and one in the sacrum. The other case presented in the distal femur. Five of six patients initially presented with musculoskeletal pain (low back pain in four and knee pain in one patient), and the intraosseous hibernomas were identified during the diagnostic work-up to determine the cause of pain. The remaining case was asymptomatic and detected incidentally during preoperative work-up for a hepatocellular carcinoma. In three patients presenting with low back pain, imaging studies revealed disc bulging and spinal canal stenosis in addition to the bone lesion at the pain site. The remaining two patients complaining of pain revealed intramedullary bone lesions only; however, the pain of these two patients was controlled by analgesics without additional intervention.

In all cases, magnetic resonance imaging (MRI) consistently showed hypointensity intermingled with slightly hyperintense foci on T1-weighted images and intermediate to high signal intensity on T2-weighted images (Fig. 1A, B). CT mainly demonstrated mild osteosclerosis (Fig. 1C). Positron emission tomography (PET) scanning was performed in one patient and revealed mild hypermetabolism in the lesion, supporting the suspicion of malignancy (Fig. 1D). A bone scan was performed in one hepatocellular carcinoma patient as part of a liver transplantation work-up and showed increased uptake mimicking metastatic carcinoma. Involvement of cortical bone and extraosseous mass formation was not present. Radiologic impressions of the lesions were reported as intraosseous hemangioma, bone marrow involvement of lymphoma, metastatic carcinoma, or osteomyelitis.

Histological and IHC findings

Histopathological examination of the core biopsy showed aggregates of large polygonal cells with finely vacuolated voluminous cytoplasm resembling brown fat cell (Fig. 2A). The multivacuolated fat cells were arranged in sheets and clusters or scattered singularly intermingled with fatty and hematopoietic marrow elements (Fig. 2B). They had small, centrally located nuclei indented by vacuolated cytoplasm. Neither mitotic figures nor nuclear atypia were identified. The tumor cells infiltrated and replaced marrow space between the bony trabeculae without destroying the anatomy, although lamellar bony trabeculae within the lesion were slightly hypertrophied and showed mild sclerosis (Fig. 2C). The lesions also had small to medium sized blood vessels inside (Fig. 2D). Hibernoma cells with vacuolated cytoplasm may look

Table 1. Clinical and radiologic data

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Reason for investigation</th>
<th>Site</th>
<th>Radiologic finding</th>
<th>Radiologic impression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>F</td>
<td>Low back pain</td>
<td>L3 VB</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT: sclerosis</td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PET: mild hypermetabolism</td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hemangioma</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>M</td>
<td>Low back pain</td>
<td>T12 VB</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple X-ray: sclerosis</td>
<td>Hemangioma</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>M</td>
<td>Hepatocellular carcinoma</td>
<td>T12 VB</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT: sclerosis</td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bone scan: increased uptake</td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hemangioma</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>M</td>
<td>Low back pain</td>
<td>Sacral ala</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Hemangioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT: osteolysis with peripheral sclerosis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>F</td>
<td>Knee pain</td>
<td>Distal femur</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Hemangioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT: mild sclerosis</td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>F</td>
<td>Low back pain</td>
<td>L3–4 VB</td>
<td>MR: T1, low, heterogenous; T2, high</td>
<td>Hemangioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT: sclerosis</td>
<td>Metastasis</td>
</tr>
</tbody>
</table>

F, female; VB, vertebral body; MR, magnetic resonance; CT, computed tomography; PET, positron emission tomography; M, male.

http://jpatholtm.org/
https://doi.org/10.4132/jptm.2017.07.28
like lipoblasts or foamy histiocytes. Among our cases, one was initially misdiagnosed as lipoblast in marrow space, and another was misinterpreted as a foamy histiocyte collection.

With IHC staining, the vacuolated cells were positive for S-100 protein in nuclei and cytoplasm and negative for CD68 and pan-cytokeratin (AE1/AE3) (Fig. 3). These IHC findings were consistent with intraosseous hibernoma and excluded histiocytic lesion or hidden metastatic carcinoma as possible diagnoses.

DISCUSSION

Hibernoma is a rare benign tumor composed of brown fat. Brown fat is known to exist in restricted portions of the body of newborn humans and hibernating animals, performing a role in thermogenesis without shivering. Brown fat gradually disappears postnatally within a few years but can remain focally in the paravertebral and neck region, mediastinum, and retroperitoneum in adults.

In the study of a large series of hibernomas from the Armed Forces Institute of Pathology (AFIP), USA, soft tissue hibernomas were reported to usually occur in 30- to 40-year-old adults, varying from 2 to 72 years of age, with almost equal distribution between the sexes. These tumors most commonly occur in the subcutaneous or intramuscular region of the thigh, which is not the normal

Fig. 1. Radiologic findings of intraosseous hibernoma. (A) Low signal intensity on T1-weighted magnetic resonance imaging (MRI). (B) Heterogeneous T2 high signal intensity on T2-weighted MRI. (C) Sclerotic change on computed tomography. (D) Mild hypermetabolism on positron emission tomography scan (arrow).
location of brown fat.1

Hibernomas are very rarely found in an intraosseous location, with a total of 12 cases reported in the English literature up to now.4-8,10 Previous study of intraosseous hibernomas described slight female predominance and an age range of 40 to 85 years.10 In this study, we presented six additional cases of intraosseous hibernomas diagnosed at Seoul National University Hospital between 2006 and 2016. Our cohort showed similar sex and age distribution to the previous study, with three males and three females varying in ages from 45 to 71 years. Most of our cases (five of six patients) initially presented with musculoskeletal pain and underwent imaging work-up to determine the cause. Detected bone lesions were generally accompanied by disc herniation or spinal stenosis at the pain site. This finding had suggested that musculoskeletal pain, which had led the patient to seek medical attention, may be irrelevant to the bone lesion. To date, intraosseous hibernomas are usually considered to be asymptomatic.15 Only one previous case was reported symptomatic due to the resolution of symptoms after radioablation therapy.9 In our cohort, two of five patients presenting with pain had no other lesions that could cause pain besides the intraosseous lesion, allowing the possibility of intraosseous hibernoma-induced bone pain. However, the patients’ pain was controlled by analgesics without additional interventions such as radioablation or curettage, suggesting that the pain was not actually caused by the intraosseous hibernoma.

Most reported intraosseous hibernomas were located in the axial skeleton,4,13 and five of our cases were also found in the axial skeleton. However, one case in our study was found in the distal femur and presented with leg pain. Radiologic features of the lesions were consistent with those described in the previous studies.5,7,8,10 Intraosseous hibernomas appeared as a sclerotic lesion on CT, with MRI showing T1 hypointensity with internal hyperintense foci, T2 heterogenous hyperintensity, and moderate contrast...
Intraosseous Hibernoma • 503

enhancement on post-contrast T1-weighted image. The lesions also revealed mildly increased uptake on PET scans and bone scans. The heterogeneous signals and contrast enhancement on MRI16,17 and increased uptake on bone scan8 are due to the increased vascularity within the lesions. Brown fat cells of hibernomas have numerous mitochondria in the cytoplasm. These mitochondria-rich brown fat cells present mild glucose hypermetabolism and increased 18F fluorodeoxyglucose uptake on PET/CT scans.18 Sclerosis on the CT scan is a nonspecific finding that may be seen in other lesions as a reactive change.7 Imaging findings of intraosseous hibernomas usually suggest a more common diagnosis of metastases and hemangiomas, not a hibernoma.5,7,8,10 The possibility of metastasis requires a histologic examination of the lesion to rule out malignancy. In our cohort, differential diagnoses for the imaging results were intraosseous hemangioma, bone marrow involvement of lymphoma, metastatic carcinoma, and osteomyelitis.

Microscopically, intraosseous hibernoma shows sheets and clusters of brown fat cells with voluminous multivacuolated cytoplasm and central small nuclei with minimal nuclear atypia. Unlike intraosseous lipomas, which destroy bony trabeculae and form a mass lesion,19 intraosseous hibernomas keep the bony trabeculae intact and infiltrate between them.4,7 This growth pattern is associated with reactive sclerosis of bony trabeculae affected by a lesion and was observed in most of the biopsied specimens of our cases. Sclerosis of bony trabeculae is a nonspecific finding that may be seen in other lesions that grow in the marrow space, including intraosseous hemangioma, lymphoma, and osteoblastic metastasis.7 Hibernoma cells with vacuolated cytoplasm may mimic lipoblasts of liposarcoma, foamy histiocytes, and granular cell tumors. Immunohistochemically, brown fat cells are positive for S-100 protein in the nuclei and cytoplasm and negative for CD68. Histiocytes can be distinguished by CD68 positivity. Lipoblasts are smaller and have fewer vacuoles than brown fat cells and show definite nuclear atypia. Absence of intracytoplasmic...
Vacuoles can differentiate granular cell tumors from brown fat cells. In our cohort, there were misdiagnoses in two cases: one as lipoblasts in the marrow space, and the other as foamy histiocytes collection. The diagnosis of intraosseous hibernoma was confirmed by IHC testing for S-100 protein and CD68.

Osteoblasts and adipocytes are known to originate from common mesenchymal stem cells. Recently, it is known that differentiation of brown fat cells is associated with PRD1-BF1-RIZ1 homologous domain-containing 16 (PRDM16) under regulation by bone morphogenetic protein 7 (BMP7), which stimulates bone formation. Considering the function of BMP7 in bone formation and brown adipogenesis helps explain how brown fat cells and sclerotic bony trabeculae are mixed in intraosseous hibernomas.

Whether the brown fat cells in the marrow space are non-neoplastic resting cells or a neoplastic lesion is arguable. IHC staining does not help in this matter. In contrast to the intraosseous lipoma, which develops into a mass without hematopoietic marrow or bony trabeculae within the tumor, the fact that the intraosseous hibernoma is confined to the marrow spaces without forming a destructive mass suggests the former explanation. However, the radiologically distinct lesions described previously and in our studies support the lesion as being benign but neoplastic.

Intraosseous hibernomas are extremely rare and benign tumors. However, imaging findings for intraosseous hibernomas are non-specific, and bone biopsy with histologic confirmation is usually required to distinguish it from other common conditions such as metastases. If pathologists do not consider the possibility of intraosseous hibernomas, the presence of brown fat cells in a bone biopsy specimen can be overlooked or misdiagnosed, leading to repeated biopsy to confirm the radiologically abnormal bone lesion. Therefore, pathologists need to be aware of intraosseous hibernomas to avoid missing this rare lesion.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

A Rare Case of Aggressive Melanotic Schwannoma Occurred in Spinal Nerve of a 59-Year-Old Male

Sung-eun Choi* · Yoon Jin Cha*
Jisup Kim · Hyunsoo Cha
Jayeong Seo · Sung-Uk Kuh¹
Sung-Jun Kim² · Se Hoon Kim³

Departments of Pathology, ¹Neurosurgery, and ²Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; ³Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Received: October 17, 2016
Revised: December 6, 2016
Accepted: January 4, 2017

Corresponding Author
Se Hoon Kim, MD
Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2228-1764
Fax: +82-2-362-0860
E-mail: pacco@yuhs.ac

*Sung-eun Choi and Yoon Jin Cha contributed equally to this work.

Key Words: Melanotic schwannoma; Spine; Recurrence; Metastasis

Melanotic schwannoma is a rare variant of nerve sheath neoplasm that shows ultrastructural and immunophenotypical features of Schwann cells but also has cytoplasmic melanosomes and is reactive for melanocytic markers as well. Unlike conventional schwannoma, which is totally benign, MS has an unpredictable prognosis and is thought to have low-malignant potential. Herein, we present a rare case of recurrent MS in lumbar spine of a 59-year-old male.

CASE REPORT

This study was approved by the Institutional Review Board of Gangnam Severance Hospital with a waiver of informed consent (IRB No. 3-2016-0255).

A 59-year-old male presented with right buttock pain and radiating leg pain. He had a medical history of hypertension on medication for 10 years. Five years ago, he had a hemi-laminectomy with removal of a spinal cord mass of left L4 level, at the outside hospital, and the diagnosis was MS. On spinal magnetic resonance imaging, tumor in previous operative site, L4 level of spinal cord, was recognized with involvement of L4 vertebral body (Fig. 1A). Tumor recurrence was considered based on the patient’s history. Subsequent positron emission tomography–computed tomography revealed strong fluorodeoxyglucose (FDG) uptake in the L4/5 level. Multiple lung nodules with increased FDG uptake were found in the left upper lobe, right middle lobe, and right lower lobe, which appeared to be consistent with metastatic nodules (Fig. 1B). Patient received subtotal laminectomy of L4 and subtotal laminectomy of L3 lower and L5 upper bodies. The resected specimen submitted in fresh...
state consisted of a product of L4 corpectomy, including a body of L4 spinal bone and separately sent soft tissue. A 3.3×2.2-cm-sized black, soft mass was located in the posterior side of the L4 body. On cut section, the black mass was infiltrating into the bone (Fig. 2A).

On histological examination, a cellular pigmented mass was infiltrating the bone marrow (Fig. 2B). Discohesive tumor cells were arranged in solid sheets or nests. Tumor cells had eosinophilic ample cytoplasm, long cytoplasmic process with fuzzy cell borders, and variable amounts of cytoplasmic melanin pigments. Nuclear pleomorphism and prominent macronucleoli were observed with a few mitoses up to 2/10 high power fields (HPFs) (Fig. 2C). Foci of tumor necrosis were observed (Fig. 2D). Immunohistochemical staining for human melanoma black 45 (HMB45; 1:100, clone HMB45, Dako, Carpinteria, CA, USA), S-100 protein (1:2,000, clone bBS/NC/VI-H14, Dako), Ki-67

Fig. 1. Radiologic findings of spinal melanotic schwannoma. (A) Magnetic resonance imaging of lumbar spine reveals a destructive mass of the vertebral body. (B) Metastatic pulmonary nodule in left upper lobe with increased fluorodeoxyglucose uptake on positron emission tomography–computed tomography (arrowheads).

Fig. 2. Gross, microscopic and ultrastructural findings of melanotic schwannoma. (A) A heavily pigmented black round mass of vertebral body has infiltrative margin. (B) Tumor cells permeate the bone marrow space of vertebra (left). Note the right sided normal bone marrow that shows retained trabecular bone and marrow space containing hematopoietic cells. (C) Epithelioid tumor cells have discernible cytoplasmic membrane, pleomorphic nuclei, and cytoplasmic melanin pigments. Note the mitosis (center) and prominent nucleolus. (D) Foci of tumor necrosis are seen. Human melanoma black 45 (E) and S-100 protein (F) are diffusely and strongly positive in tumor cells. (G) Collagen type IV staining reveals pericellular membranous staining of tumor cells, implying the presence of basal lamina. (H) On electron microscopy, abundant basal lamina of tumor cell is evident with cytoplasmic melanosomes (×12,000) (inset, ×5,000).

http://jpatholtm.org/
https://doi.org/10.4132/jptm.2017.01.04
Table 1. Previously reported melanotic schwannomas with metastasis

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Primary site</th>
<th>Metastasis site</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>27</td>
<td>Bronchus</td>
<td>Brain</td>
<td>Rowlands et al. (1987)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>48</td>
<td>T9-T10</td>
<td>Lung, skin</td>
<td>Kileen et al. (1988)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>27</td>
<td>L5</td>
<td>Lung, pleura</td>
<td>Vallat-Decouvelaere et al. (1999)</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>35</td>
<td>L3-L5</td>
<td>Bone, lymph node</td>
<td>Vallat-Decouvelaere et al. (1999)</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>45</td>
<td>T6</td>
<td>Lung, bone, liver</td>
<td>Vallat-Decouvelaere et al. (1999)</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>35</td>
<td>C4-C5</td>
<td>Leptomeninges</td>
<td>Santaguida et al. (2004)</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>61</td>
<td>T7</td>
<td>Leptomeninges</td>
<td>Tawk et al. (2009)</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>33</td>
<td>L5-S1</td>
<td>Lung</td>
<td>Shields et al. (2011)</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>32</td>
<td>C4-C5</td>
<td>Lung</td>
<td>Farias et al. (2013)</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>15</td>
<td>Cervical paraspinal</td>
<td>Leptomeninges, parascapular, and neck soft tissues</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>23</td>
<td>L4</td>
<td>Liver</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>25</td>
<td>Sacrum</td>
<td>Lung, pleura, lymph nodes</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>27</td>
<td>L2-L3</td>
<td>Lung, lymph nodes, abdomen</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>32</td>
<td>C2 nerve root</td>
<td>Lung, skeleton</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>40</td>
<td>Paraspinal L3-L4</td>
<td>Spine (T12)</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>44</td>
<td>T5-6</td>
<td>Lung, posterior chest wall</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>47</td>
<td>L3-L4</td>
<td>Lung, liver, pleura, leptomeninges, bone</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>47</td>
<td>C5</td>
<td>Lumbar/thoracic, brain</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>61</td>
<td>T6-T8</td>
<td>Spinal cord</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>67</td>
<td>T10</td>
<td>Liver</td>
<td>Torres-Mora et al. (2014)</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>46</td>
<td>L3</td>
<td>Brain, leptomeninges</td>
<td>Knoo et al. (2016)</td>
</tr>
</tbody>
</table>

M, male; F, female; T, thoracic spine; L lumbar spine; C, cervical spine.

We reported a rare case of spinal MS that showed local recurrence and pulmonary metastasis. MS is a rare variant of nerve sheath neoplasm of which less than 200 cases have been reported to date with three cases in Korean reports. MS can be divided into psammomatous and nonpsammomatous type, and approximately half of the psammomatous MS are related to Carney complex, an autosomal dominant disease with cardiac myxomas and Cushing syndrome. Nonpsammomatous MS is considered to be a sporadic type and commonly affects spinal nerves and paraspinal ganglia, whereas psammomatous type often involves autonomic nerves of viscera. In contrast to the typical encapsulation of conventional schwannoma, MS is a circumscribed but unencapsulated tumor, which may reflect the potential of more aggressive nature of MS such as an invasive growth pattern. In the present study, the tumor showed infiltrative border that permeated the bone marrow space. Unlike the conventional schwannoma, which is a totally benign neoplasm, MS follows an unpredictable clinical course. Even devoid of overt histologic atypia, approximately 10% of MS follow a malignant course. Although MS could demonstrate nuclear pleomorphism and macronucleoli with expression of melanocytic markers, findings mimicking malignant melanoma, these histologic features are poorly correlated with the clinical outcome. However, unlike malignant melanoma which usually has frequent mitosis, MS has rare mitosis. In addition, histologic features of ample cytoplasm, cytoplasmic process, and indiscernable cell border as well as low proliferative index contribute to the diagnosis of MS rather than malignant melanoma. Presence of mitosis itself, particularly over one mitosis/10HPFs, is the only known risk factor of metastasis in MS. In present case, the tumor had histologic atypia—nuclear pleomorphism, prominent macronucleoli—and foci of necrosis which are worrisome histologic features in routine pathologic diagnosis. Moreover, more importantly, the mitotic count was up to 2/10HPFs, which may have been a factor attributing to the lung metastasis. Recently, Torres-Mora et al. carried out gene microarray study covering over 1,700 genes, showed different gene expression profile of MS from conventional schwannoma or malignant melanoma, and suggested that MS is a distinctive neoplasm, belonging neither to the conventional schwannoma nor malignant melano-
anoma. Among pigmented lesions of central nervous system, MS lacks GNAQ codon 209 mutations, which is one of mutational descriptors found in leptomeningeal melanocytic lesions. Although MS is a genetically interesting and ambiguous tumor, a genetic study of the present case was not available. Instead, immunohistochemical staining and electron microscopy helped to identify the abundant basal lamina and cytoplasmic melanosomes, which elucidated the features of both Schwann cell and melanocyte. Previous study described different basement membrane staining patterns of MS from conventional schwannoma and leptomeningeal melanocytic lesion. MS demonstrated pericellular staining of basement membrane on collagen type IV, similar to that of conventional schwannoma with or without a nesting pattern, whereas other melanocytic lesions had predominant nesting pattern.

So far, only about 20 cases of metastatic MS have been reported, which are shown in Table 1. This is the first metastatic and recurrent MS case in a Korean patient. The sporadic, spinal MS showed an aggressive biologic behavior—local recurrence and pulmonary metastasis—and the ancillary examination delineated the pericellular basal lamina and cytoplasmic melanosomes.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This study was supported by a faculty research grant of Yonsei University College of Medicine for 6-2015-0147.

The authors are deeply indebted to Dr. Yeon-Lim Suh in the Department of Pathology, Samsung Medical Center, for her insightful discussion that greatly improved the manuscript.

REFERENCES

Cytologic Characteristics of Thymic Adenocarcinoma with Enteric Differentiation: A Study of Four Fine-Needle Aspiration Specimens

Ah-Young Kwon · Joungho Han · Hae-yan Cho · Seokhwi Kim · Heejin Bang · Jiyeon Hyeon
Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Thymic adenocarcinoma is extremely rare. Although its histologic features have been occasionally reported, a lack of description of the cytologic features has hampered the prompt and accurate diagnosis of this condition. Herein, we describe the cytologic findings and histology of four aspiration cytology specimens of thymic adenocarcinoma. The specimens were obtained from primary tumors, metastatic lymph nodes, and pericardial effusions. All four specimens showed three-dimensional glandular clusters with a loss of polarity and nuclear overlapping. One specimen had extensive extracellular mucinous material. Three specimens contained tumor cells with intracytoplasmic vacuoles. While the specimen with extracellular mucin showed relatively mild cytologic atypia, other specimens exhibited more atypical cytologic changes: irregular nuclear membranes, a coarse chromatin pattern, and prominent nucleoli. The cytologic features were correlated with the histologic features in each case of enteric type thymic adenocarcinoma. The differential diagnosis included other thymic carcinomas, yolk sac tumors, and metastatic adenocarcinoma from the lung or colorectum.

Key Words: Mediastinum; Thymus gland; Adenocarcinoma; Cytology; Aspiration

Thymic adenocarcinoma is a very rare neoplasm that accounts for 0.48% of all thymic epithelial tumors. Only 58 cases have been reported to date. Based on histology, thymic adenocarcinoma is classified into four subtypes: mucinous, papillary, not otherwise specified (NOS), and a type with adenoid cystic carcinoma-like features. Recently, Moser et al. and our institute reported that both mucinous and NOS types showed enteric differentiation, suggesting that enteric type thymic adenocarcinoma could be an appropriate term in regards to the histology of this condition.

Previous studies have focused on the diagnosis and classification of thymic adenocarcinoma according to its clinical, histologic, and immunohistochemical features. However, the cytologic features of thymic adenocarcinoma have not yet been reported. In this study, we investigated the characteristics of thymic adenocarcinoma in aspiration cytology based on four specimens from three patients. The clinical and histologic features of these specimens were reported in our previous study. We analyzed the cytologic features and histologic characteristics as well as the differential diagnosis of thymic adenocarcinoma.

CASE REPORT

The clinicopathologic characteristics of four thymic adenocarcinoma specimens are summarized in Table 1. These four specimens were obtained from three patients, who were reported in our previous study as cases 6, 7, and 8. All cytology specimens were obtained by fine-needle aspiration (FNA) from the subaortic and right supraclavicular lymph nodes, pericardial effusion, and tumors. This study was approved by the Institutional Review Board of Samsung Medical Center (IRB file No. 2016-07-064), and informed consent was waived.

Patient 1 (specimen 1)

A 70-year-old man visited Samsung Medical Center complaining of chest wall pain. Chest computed tomography (CT) revealed a 9.6-cm-sized cystic lesion in the anterior and left upper mediastinum with direct extension to the mediastinal fat and the
left upper lobe of the lung. Multiple enlarged lymph nodes were found in the mediastinum. The patient underwent endobronchial ultrasound (EBUS)–transbronchial needle aspiration (TBNA) of the subaortic lymph node. FNA slides revealed some epithelial clusters in bloody background (Fig. 1A). Three-dimensional (3D) clusters consisted of variably sized cells with moderate to high nuclear atypia. Their nuclei had irregular contours, margination, a coarse chromatin pattern, and single or two prominent nucleoli. Cytoplasmic borders were indistinct, and the amount of cytoplasm was variable (Fig. 1B). Some of the tumor cells contained intracytoplasmic vacuoles (Fig. 1A, arrow). Core needle biopsy (CNB) was conducted a day after the EBUS-TBNA. The tumor was diagnosed as thymic adenocarcinoma with enteric differentiation (Fig. 1C). The histologic characteristics were well correlated with the features identified in cytologic specimens: a tubulo-glandular pattern with nuclear atypia and occasional intracytoplasmic mucin.

Table 1. Clinicopathologic characteristics of cases

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Smoking history</th>
<th>Past history</th>
<th>Masaoka stage</th>
<th>Specimen of aspiration</th>
<th>Cytologic diagnosis</th>
<th>Histologic diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>70</td>
<td>40 PY</td>
<td>HTN, DM</td>
<td>II</td>
<td>Mediastinal LN (subaortic LN)</td>
<td>Metastatic carcinoma, showing glandular clusters of atypical cells</td>
<td>Thymic adenocarcinoma, enteric type</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>50</td>
<td>20 PY</td>
<td>Angina</td>
<td>IVB</td>
<td>Supraclavicular LN</td>
<td>Metastatic carcinoma, showing glandular clusters of atypical cells</td>
<td>Thymic adenocarcinoma, enteric type</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>62</td>
<td>5 PY</td>
<td>HTN, DM</td>
<td>IVB</td>
<td>Tumor</td>
<td>A few clusters of atypical cells in mucinous background</td>
<td>Thymic adenocarcinoma, enteric mucinous type</td>
</tr>
</tbody>
</table>

M, male; PY, pack-year; HTN, hypertension; DM, diabetes mellitus; LN, lymph node.

tubular growth pattern, pseudostratified nuclei with atypia, and a few instances of intracytoplasmic mucin were also found in the CNB specimen (Fig. 1I). Considering the cytology and histology of the tumor, enteric type adenocarcinoma was an appropriate diagnosis.

After 6 months of prolonged chemotherapeutic treatment, pericardial effusion from the patient was obtained by aspiration. Liquid-based cytology showed crowded epithelial cells with nuclear overlapping (Fig. 1G). Pleomorphic nuclei, vesicular chromatin, and single or two prominent nucleoli were also shown (Fig. 1H).

Patient 3 (specimen 4)

A 62-year-old man presented to the hospital with chest discomfort. Chest CT showed an infiltrative anterior mediastinal mass, measuring 3.2 cm in size, along with massive pericardial effusion. The possibility of lymphoma or thymic malignancy was suggested considering the patient’s clinical and radiologic features. FNA of the anterior mediastinum was conducted. In the aspirated specimen, a few cells could be identified with extensive mucinous material in the background (Fig. 1J). Tumor cells were round and small to medium in size. A relatively fine chromatin pattern and indistinct nucleoli favored benign cells; however, slight nuclear margination, irregular arrangement, and cellular overlapping suggested malignancy (Fig. 1K). The patient underwent surgical excision. According to the cytologic and histologic features of the specimen, a diagnosis of enteric type mucinous adenocarcinoma was made (Fig. 1L). One major histologic characteristic of the surgical specimen was floating tumor clusters in the extracellular mucin that were cribriform, tubular, or single cell types.

DISCUSSION

Thymic adenocarcinoma is rarely encountered in routine practice. However, with the increasing frequency of EBUS, pathologists
Fig. 1. Cytologic characteristics of thymic adenocarcinoma with histology. (A–C) The fine-needle aspiration (FNA) specimen was obtained from a mediastinal lymph node. Some epithelial cell clusters with a three-dimensional glandular structure are shown. The variably-sized cells have atypical nuclei showing an irregular margin, distinct margination, vesicular chromatin, and prominent nucleoli. Loss of polarity is also present. The cytoplasm is moderately abundant, and intracytoplasmic vacuoles are not infrequently seen (arrow). Adenocarcinoma with a tubular pattern is revealed in the histomorphology of the core biopsy from the tumor. Glandular structure, atypical nuclei, eosinophilic cytoplasm, intracytoplasmic vacuoles, and surrounding inflammatory cells and fibrotic stroma are identical findings with aspiration cytology (A and B, Wright-Giemsa stain). (D–I) Two separate FNAs were carried out in a supraclavicular lymph node (D–F) and the pericardial effusion (G, H). There are glandular- and cribriform-patterned clusters with an inflammatory background. Palisading and stratification are frequently found in clusters. An irregular nuclear margin, vesicular chromatin, prominent nucleoli, and an occasional intracytoplasmic vacuole (arrow) are shown in this sample from patient 2. A core biopsy specimen was obtained from the mediastinal tumor. The tumor shows a tubular and cribriform pattern, stratified nuclei, eosinophilic cytoplasm, intracytoplasmic vacuoles, and inflammatory cells (G and H, Wright-Giemsa stain). (J–L) Most of the aspiration specimen obtained from the tumor is mucinous material. Only a few clusters can be detected. A round cluster of tumor cells reveals relatively mild nuclear atypia. Nuclear overlapping and irregular arrangement are still observed. The excisional specimen reveals floating tumor cells with a tubular or cribriform pattern within the extensive extracellular mucin.
should be aware of the cytologic features of thymic adenocarcinoma in aspiration. In addition, thymic adenocarcinomas often accompany metastasis at the time of diagnosis. Therefore, the importance of an accurate diagnosis of aspiration cytology in mediastinal tumors, lymph nodes, or effusion is increasing.

Thymic adenocarcinoma may be classified into four categories based on histology. We previously reported that mucinous adenocarcinoma and adenocarcinoma NOS could be referred to as enteric type adenocarcinoma. This enteric type is the most common; all 14 cases reported in Korea have been of this type. Although some individual reports have mentioned the diagnosis of thymic adenocarcinoma in aspiration specimens, a detailed description of the cytologic diagnosis of thymic adenocarcinoma has not been reported to date.

In our FNA specimens, thymic adenocarcinoma cells demonstrated 3D clusters with nuclear crowding and overlapping. Other cytologic findings were similar to histomorphology. In specimens 1 and 2, the columnar cells had stratified nuclei and occasional intracytoplasmic vacuoles. The nuclei had the following signs, which suggest malignancy: irregularity of the nuclear membrane, nuclear margination, coarse chromatin, and prominent nucleoli. A dirty background containing blood and inflammatory cells could aid in a confirmative diagnosis. Malignant features of the nuclei were not clear for the mucinous type (specimen 4). However, extensive extracellular mucin and loss-of-polarity of clusters were characteristically identified. Their cytologic features were more prominent when compared with histologic specimens.

The differential diagnosis of thymic adenocarcinoma includes thymic epithelial malignancies, direct invasion of pulmonary adenocarcinoma, metastatic adenocarcinoma, and germ cell tumors, especially yolk sac tumors. Aspiration cytology of yolk sac tumors might show similar cytologic features to thymic adenocarcinoma, such as atypical cells with a glandular pattern and a dirty background. The serum α-fetoprotein level and immunohistochemical staining could be helpful in the differential diagnosis. Other thymic carcinomas might reveal epithelial cell clusters with nuclear atypia and crowding. Glandular tumor clusters and intracellular or extracellular mucin favor a diagnosis of adenocarcinoma. Metastatic adenocarcinoma from other organs should be regarded as an important differential diagnosis. In particular, colonic adenocarcinoma and pulmonary enteric type adenocarcinoma might be difficult to differentiate from primary thymic adenocarcinoma because their histologic features and immunohistochemical profile are very similar. Therefore, clinical and radiologic findings such as location, size, and the presence of metastasis of the tumor should be rigorously analyzed and carefully considered.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

REFERENCES
Mucosal pseudolipomatosis of the stomach is a rare lesion. It is characterized by the presence of gas-filled vacuoles in the lamina propria.¹ The etiology of this lesion is uncertain. Herein, we present a case of gastric pseudolipomatosis with an unusual iatrogenic artifact while performing injection of submucosal solution during endoscopic submucosal dissection (ESD).

CASE REPORT

The patient had provided written informed consent for publication of this case study.

A 63-year-old woman was admitted for evaluating gastric submucosal lesion incidentally detected during a health check-up. Upon endoscopic examination, a single smooth surfaced polypoid lesion sized 1 cm was identified. Under the clinical impression of submucosal benign mesenchymal tumor, ESD was performed. Normal saline and indigo carmine dye mixed with hyaluronic acid was injected into the submucosal layer to lift up the lesion and distinguish the muscle layer from the submucosal layer. The endoscopist did not detect any visible mucosal changes before injecting the solution (Fig. 1A). However, the release of air bubbles from the lesion was clearly observed during the submucosal dissection (Fig. 1B). Microscopic examination of the submucosal tumor was consistent with inflammatory fibroid polyp. The lamina propria contained numerous unlined empty spaces without inflammatory reaction, measuring 40–600 μm in diameter and extending to the submucosa and submucosal tumor (Fig. 2A, B). Neither specific cytological abnormalities nor architectural destruction was found in the mucosa. *Helicobacter pylori* was not identified. The lesion showed negative immunohistochemical staining results for D2-40, CD31, CD34, vimentin, and S100 protein. Therefore, lymphangiomatous lesion and lipomatous metaplasia were ruled out (Fig. 2C). These histologic findings were similar, if not identical, to those of gastrointestinal pseudolipomatosis reported previously.¹² Based on histological and immunohistochemical findings, a final diagnosis of gastric pseudolipomatosis was made.

DISCUSSION

Gastrointestinal pseudolipomatosis is characterized by the presence of gas-filled vacuoles of various sizes within the lamina propria. It is named as gastrointestinal pseudolipomatosis because it resembles fatty infiltration.¹² Histologically, differential diagnoses of pseudolipomatosis include lymphangiomatous lesion and lipomatous metaplasia which can be easily excluded by using appropriate immunohistochemical staining. The etiology of pseudolipomatosis is unclear. Penetration of gas into the injured mucosa associated with air pressure during endoscopy,¹ *H. pylori* infection,³ and the use of disinfectant hydrogen peroxide solution have been proposed as possible etiologies.⁴ We propose that our case is an artifact caused by infusion of incompletely removed air inside the syringe caused by inadequate flushing when injecting the submucosal solution (Fig. 2D). Several facts
support this notion. First, there were no apparent etiologic factors in our case. There was no mucosal lesion such as atrophy or ulcer. In addition, *H. pylori* was not identified. Hydrogen peroxide was not used either. Second, there was no inflammatory or fibroblastic reaction in the vicinity of unlined empty spaces, suggesting short duration of this lesion. Third, the endoscopist noted incompletely removed air in the syringe containing submucosal solution and observed air bubbles being released from the gastric tissue during submucosal dissection. This lesion may represent a gastric pseudolipomatosis with an undescribed unique iatrogenic artifact while performing injection of submucosal solution during ESD procedure. Recognition of this iatrogenic artifact is important to endoscopists and pathologists because it is preventable. In addition, it might mimic other lesions, such as mucosal lymphangioma or lipomatous metaplasia.

Fig. 1. Endoscopic findings. (A) Endoscopic appearance of a single polypoid lesion without any visible mucosal changes. (B) Appearance of air bubble during submucosal dissection (arrow).

Fig. 2. Morphologic findings of the lesion. (A) Submucosal inflammatory fibroid polyp and a number of clear vacuoles overlying within the mucosa, mimicking lymphangioma or lipomatous metaplasia. (B) High resolution view of the lesion. The characteristic appearance of pseudolipomatosis shows a number of unlined empty spaces with various sizes in an otherwise intact mucosa. (C) Negative immunoreactivity for D2-40 on vacuoles. D2-40 immunostaining highlighted the preexisting lymphatic structures (arrow). (D) Presence of incompletely removed air inside the syringe (arrow).
Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2008-0062279).

REFERENCES

Nuclear Features of Follicular Patterned Thyroid Tumors