In Memory of Professor Je Geun Chi, a Great Mentor and Pathologist
Aims & Scope

The Journal of Pathology and Translational Medicine is an open venue for the rapid publication of major achievements in various fields of pathology, cytopathology, and biomedical and translational research. The journal aims to share new insights into the molecular and cellular mechanisms of human diseases and to report major advances in both experimental and clinical medicine, with a particular emphasis on translational research. The investigations of human cells and tissues using high-dimensional biology techniques such as genomics and proteomics will be given a high priority. Articles on stem cell biology are also welcome. The categories of manuscript include original articles, review and perspective articles, case studies, brief case reports, and letters to the editor.

Subscription Information

To subscribe to this journal, please contact the Korean Society of Pathologists/the Korean Society for Cytopathology. Full text PDF files are also available at the official website (http://jpatholtm.org).

Manuscript Information

Contact the Korean Society of Pathologists/the Korean Society for Cytopathology

Editors-in-Chief
Hang Soon Won, M.D. (Dong-A University, Korea)
Chung Soo Hee, M.D. (University of Ulsan, Korea)

Associate Editors
Choi Tae Jung, M.D. (National Health Insurance Service, Baam Hospital, Korea)
Han Se Young, M.D. (Inha University, Korea)

Copyright
© 2015 by the Korean Society of Pathologists/the Korean Society for Cytopathology

Published by
Chang Hee Seok, MD, Seo Young Jin, MD

Published since 1967
Volume 49 • Number 6 • November 2015 (bimonthly)
ISSN: 2383-7837 eISSN: 2383-7845

Published online on November 15, 2015
Printed on November 15, 2015

Statistics
Kim Dong Hoon (National Health Insurance Service, Baam Hospital, Korea)
Kim Hyun Woo (Inha University, Korea)

Contact the Korean Society of Pathologists/the Korean Society for Cytopathology

Publishers: Chang Hee Seok, MD, Seo Young Jin, MD
Editors-in-Chief: Soon Won Hong, MD, Chang Hee Seok, MD

Printed by ML communications Co., Ltd.
Jungang Bldg. 18-6 Wondryo-ri 89-gil, Yongsan-gu, Seoul 04314, Korea
Tel: +82-2-717-5311 Fax: +82-2-717-5315 E-mail: ml@smileml.com

Manuscript Editing by InfoLumi Co., Ltd.
210-202, 423 Pangyo-ri, Bundang-gu, Seongnam 15922, Korea
Tel: +82-70-8839-8800 E-mail: infolumi.chang@gmail.com

Front cover image: The histology and CD34 immunoreactivity of focal cortical dysplasia (FCD) in the putaminal cortex. p.445

© 2015 by the Korean Society of Pathologists/the Korean Society for Cytopathology

The journal was approved by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government.
CONTENTS

EDITORIAL

425 In Memory of Professor Je Geun Chi, a Great Mentor and Pathologist
Chong Jai Kim

REVIEWS

427 The Continuing Value of Ultrastructural Observation in Central Nervous System Neoplasms in Children
Na Rae Kim, Sung-Hye Park

438 Dysembryoplastic Neuroepithelial Tumors
Yeon-Lim Suh

450 Neuroendocrine Tumors of the Female Reproductive Tract: A Literature Review
Yi Kyeong Chun

462 Acute Atherosis of the Uterine Spiral Arteries: Clinicopathologic Implications
Joo-Yeon Kim, Yeon Mee Kim

ORIGINAL ARTICLES

472 Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats
Jae Chul Lee, Choong Ik Cha, Dong-Sik Kim, Soo Young Choe

481 Analysis of Mutations in Epidermal Growth Factor Receptor Gene in Korean Patients with Non-small Cell Lung Cancer: Summary of a Nationwide Survey
Sang Hwa Lee, Wan Soop Kim, Yoo Suk Choi, Jeong Wook Seo, Joung Ho Han, Mi Jin Kim, Lucia Kim, Geon Kook Lee, Chang Hun Lee, Mee Hye Oh,
Go Young Kim, Sun Hee Sung, Kyo Young Lee, Sun Hee Chang, Mee Sook Rho, Han Kyeom Kim, Soon Hee Jung, Se Jin Jang,
The Cardiopulmonary Pathology Study Group of Korean Society of Pathologists

489 Chronic Placental Inflammation in Twin Pregnancies
Heejin Bang, Go Eun Bae, Ha Young Park, Yeon Mee Kim, Suk-Joo Choi, Soo-young Oh, Cheong-Rae Roh, Jung-Sun Kim

497 Tongue Growth during Prenatal Development in Korean Fetuses and Embryos
Soo Jeong Hong, Bong Geun Cha, Yeon Sook Kim, Suk Keun Lee, Je Geun Chi

Comprehensive Cytomorphologic Analysis of Pulmonary Adenoid Cystic Carcinoma: Comparison to Small Cell Carcinoma and Non-pulmonary Adenoid Cystic Carcinoma
Seokhwi Kim, Jinah Chu, Hojoong Kim, Joungho Han

CASE REPORTS

Mediastinal Glomus Tumor: A Case Report and Literature Review
Si-Hyong Jang, Hyun Deuk Cho, Ji-Hye Lee, Hyun Ju Lee, Hae Yoen Jung, Kyung Ju Kim, Sung Sik Cha, Mee-Hye Oh

CD30-Positive T-Cell Lymphoproliferative Disease of the Oral Mucosa in Children: A Manifestation of Epstein-Barr Virus-Associated T-Lymphoproliferative Disorder
Mineui Hong, Young Hyeh Ku

Intrahepatic Cholangiocarcinoma with Ductal Plate Malformation-like Feature Associated with Bile Duct Adenoma
Ah-Young Kwon, Hye Jin Lee, Hee Jung An, Haeyoun Kang, Jin-Hyung Heo, Gwangil Kim

Apocrine Carcinoma of the Axilla Associated with Extramammary Paget’s Disease: A Case Report and Review of the Literature
Hye Ra Jung, Sun Young Kwon, Daegu Son

CORRESPONDENCE

Erratum: WHO Grade IV Gliofibroma: A Grading Label Denoting Malignancy for an Otherwise Commonly Misinterpreted Neoplasm

Instructions for Authors for Journal of Pathology and Translational Medicine are available at http://jpatholtm.org/authors/authors.php
The introduction of modern medicine in Korea goes hand in hand with the establishment of medical schools during the Japanese colonial period. Since then, medicine in the Republic of Korea has been greatly improved by the introduction of medical systems of the United States. Accordingly, pathology in Korea began as a basic academic discipline, but made a major shift to hospital-based surgical pathology after the Korean War. Most Korean institutions continue to practice joint operations between clinical service and experimental research. In this context, the quality of medical faculty and training has been and will continue to be a key to ensuring the quality and global competitiveness of Korean pathologists. A unique combination of residency training and graduate school education in Korea inevitably led to a stronger mentoring system compared to that in other countries. The outstanding achievements and performances of Korean scholars in surgical and experimental pathology would not have been possible without the contribution and support of great mentors.

Professor Je Geun Chi was the founder of neuropathology and pediatric pathology, and he was an enormous contributor to the development of modern pathology in Korea. He received his medical degree from Seoul National University College of Medicine in 1962. He then went on to pathology residency and subsequent neuropathology fellowship training at the Boston Children’s Hospital, Beth Israel Hospital, and Harvard Medical School. He joined the Harvard faculty in 1975. He then came back to Korea in 1976 and became a faculty member at Seoul National University. He published more than 800 articles in international journals. He served as the president of the Korean Society of Pathologists in 1996, the Korean Academy of Medical Science in 1999, and the National Academy of Medicine of Korea in 2004. After retirement, he expanded his work on magnetic resonance imaging neuroanatomy at Neuroscience Research Institute of Gachon University, and he published 7.0 Tesla MRI Brain Atlas with Professor Zang-Hee Cho.

Professor Chi was a great mentor to many of the leading pathologists in Korea today. His unique strength as a pathologist was in human embryogenesis and fetal development. The depth of his understanding of human development clearly distinguished him from other pathologists. Neurogenesis is one of the most dynamic and fascinating parts of human development, and this would partly explain Professor Chi’s enthusiasm for neuropathology and pediatric pathology. Unfortunately, he passed away on November 26, 2014. In memory of him, the November issue of the Journal of Pathology and Translational Medicine, formerly the Korean Journal of Pathology published since 1967, includes reviews and original articles written by several of his mentees, who are now leaders and great mentors in their respective fields. Their articles will provide the readers with topical and important information in the fields of neuropathology and pediatric pathology.

Dr. Yeon-Lim Suh wrote a review article on dysembryoplastic neuroepithelial tumor (DNT). The article is a great summary of the characteristics of three forms of DNT. Dr. Suk Keun Lee wrote an article on prenatal tongue development. The article is meaningful in that it is based on the collection of Professor Chi, on which Dr. Lee had been working closely with Professor Chi for decades. Drs. Sung-Hye Park and Na Rae Kim contributed an article describing the importance of ultrastructural examination in the evaluation of childhood brain tumors. Professor Chi advocated the importance of ultrastructural examination in pa-
Fig. 1. Professor Chi (on the left) celebrates his 77th birthday with his mentees.

Dr. Yi Kyeong Chun wrote a review article on neuroendocrine tumors of the female reproductive tract. The article is a comprehensive summary of neuroendocrine tumor pathology in the female reproductive tract. Dr. Yeon Mee Kim described the pathological features of acute atherosis in spiral arteries, introducing its clinical significance and relationship with poor placentation in human pregnancy. Dr. Jung-Sun Kim described the incidence and significance of chronic chorioamnionitis (maternal anti-fetal cellular rejection) in twin gestations. The clinical significance of chronic chorioamnionitis is becoming more appreciated in maternal and fetal medicine.

The term ‘mentor’ originates from the Greek mythology the Odyssey. Mentor was a great, trusted counselor of Odysseus’ son Telemachus. Professor Chi was a great teacher, friend, counselor, and writer. He left his beloved family, friends, and mentees behind (Fig. 1). He was a dedicated pathologist who left behind a tremendous legacy in the field. His views on pathology are available online (http://navercast.naver.com/contents.nhn?rid=83&contents_id=41771).

The editors of the Journal of Pathology and Translational Medicine deeply miss the great mentorship of Professor Chi and would like to express special thanks to the mentees of Professor Chi for their special contributions to the November issue.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.
The Continuing Value of Ultrastructural Observation in Central Nervous System Neoplasms in Children

Na Rae Kim · Sung-Hye Park

Department of Pathology, Gachon University Gil Medical Center, Incheon; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea

Received: September 15, 2015
Accepted: September 19, 2015

Corresponding Author
Na Rae Kim, MD
Department of Pathology, Gachon University Gil Medical Center, 21 Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Korea
Tel: +82-32-460-3847
Fax: +82-32-460-2394
E-mail: clara_nrk@gilhospital.com

Central nervous system (CNS) neoplasms are the second most common childhood malignancy after leukemia and the most common solid organ neoplasm in children. Diagnostic dilemmas with small specimens from CNS neoplasms are often the result of multifactorial etiologies such as frozen or fixation artifact, biopsy size, or lack of knowledge about rare or unfamiliar entities. Since the late 1950s, ultrastructural examination has been used in the diagnosis of CNS neoplasms, though it has largely been replaced by immunohistochemical and molecular cytogenetic studies. Nowadays, pathologic diagnosis of CNS neoplasms is achieved through intraoperative cytology, light microscopy, immunohistochemistry, and molecular cytogenetic results. However, the utility of electron microscopy (EM) in the final diagnosis of CNS neoplasms and investigation of its pathogenetic origin remains critical. Here, we reviewed the distinguishing ultrastructural features of pediatric CNS neoplasms and emphasize the continuing value of EM in the diagnosis of CNS neoplasms.

Key Words: Microscopy, electron; Central nervous system; Neoplasms; Childhood

The general incidence of pediatric central nervous system (CNS) neoplasms is as follows: the most common type is astrocytomas including pilocytic astrocytomas, fibrillary astrocytomas, or brain stem gliomas (46%–48%); followed by medulloblastomas (40%–45%); ependymomas (8%–10%); and others, including germ cell tumors, gangliogliomas, sellar cranialpharyngiomas, etc. (2%–5%).1–3 Commonly encountered CNS neoplasms in adults, such as oligodenrogliomas, high-grade astrocytic tumors, or meningiomas, are relatively uncommon in children, except for meningiomas with or without neurofibromatosis syndrome or meningioangiomatosis or CNS lymphomas in immunocompromised children with acquired immunodeficiency syndrome or Wiskott-Aldrich syndrome.5–7 Treatments for adults differ from those for children due to the unpredictable clinical course and a the greater hazardous effect of aggressive treatments such as radiation on the developing brain. Similar to differences in primary CNS neoplasms between children and adults, metastatic CNS neoplasms in children commonly originate from neuroblastoma, embryonal rhabdomyosarcoma, Wilms tumor, or malignant melanoma arising from neurocutaneous melanosis, whereas cerebral metastatic tumors in adults typically originate from lung, breast, or colon cancers, renal cell carcinoma, or malignant melanomas.6,7

Regarding incidence, the spectrum of pediatric CNS neoplasms varies, from primitive embryonal tumors to highly differentiated tumors such as meningioma, schwannoma, or glioblastoma.8 The former group is represented by small round cell tumors, i.e., undifferentiated or poorly differentiated tumors. The 2007 World Health Organization (WHO) classification of CNS neoplasms included angiocentric glioma, papillary glioneuronal tumor (PGNT), rosette-forming glioneuronal tumor of the fourth ventricle, papillary tumor of the pineal region (PTPR), pituicytoma, and spindle cell oncocytoma of the adenohypophysis, which are rarely encountered in either children or adults.9

The role of electron microscopy (EM) in diagnostic pathology has declined over recent decades due to major advancements in immunohistochemistry, flow cytometry, and molecular cytogenetic analysis, thereby eliminating the need for EM. However, its role in the neuropathology field includes identification of etiologic agents or cellular stored materials or for use as an ancillary method for CNS neoplasms for which light microscopy or immunohistochemistry are inconclusive and ambiguous.10,11 Although benignity and malignancy cannot be distinguished by EM, pediatric CNS neoplasms require the integration of comprehensive data from light microscopic examination with immunohistochemical, EM, and molecular cytogenetic studies.
Actually, starting with the 2000 WHO classification of CNS neoplasms, genetic profiles have been incorporated as an additional tool used in the definition of brain tumors because molecular cytogenetic evaluation has both diagnostic and predictive utility. For example, emerging data from cytogenetic and molecular genetic analyses suggest that some molecular cytogenetic alterations such as isocitrate dehydrogenase-1 (IDH-1) or 1p19q loss of heterozygosity (LOH) provide both diagnostic and prognostic data on CNS neoplasms though IDH-1 mutation or 1p19q LOH are rarely found in pediatric oligodendrogliomas, compared to 40%–80% of adult cases. IDH-1 mutation-specific immunohistochemistry is diagnostically helpful in recognizing diffuse tumor infiltration of astrocytoma or oligodendroglia and to distinguishing WHO grade I pilocytic astrocytomas from diffuse astrocytomas as well as astrocytic and oligodendroglial tumors from ependymomas or oligodendrogliomas from other glioneuronal tumors with clear-cell morphology. However, it has diagnostic limitations in terms of specificity or sensitivity, and further evaluation of other diagnostic tools might be needed.

Here, we review the ultrastructural findings and categorize the EM findings of pediatric CNS neoplasms based on light microscopic morphology as follows: spindle cell tumors, round cell tumors including oligodendroglioma and oligodendroglial-like tumors, papillary tumors, rhabdoid cell tumors, and pleomorphic cell tumors. Although not uncommonly encountered in pediatric CNS neoplasms, germ cell neoplasms showing characteristic light microscopic findings such as germinoma, teratoma, choriocarcinoma, embryonal carcinoma, or endodermal sinus tumor will not be described in this review.

SPINDLE CELL TUMORS OF THE CENTRAL NERVOUS SYSTEM

First, the spindle cell category includes the following entities: meningioma, schwannoma, ependymoma, and astrocytoma including pilocytic astrocytoma, and pilomyxoid astrocytoma. Among these, ependymoma and pilocytic astrocytoma are common in children, while meningioma or schwannoma are not common. Rather, meningioma associated with meningioangiomatosis has been reported mainly in childhood. Previous reports on meningioma arising in meningioangiomatosis describe entrapped neurons in the infiltrating meningioma. Ultrastructural findings of meningioma show its meningothelial arachnoidal cell nature, i.e., epithelial and mesenchymal nature; connective tissue fibers and basal lamina are not usually seen among tumor cells within the syncytium (Fig. 1A). Elongated interdigitating cell processes filled with copious amounts of intracytoplasmic intermediate filaments show an interdigitating and jigsaw pattern, corresponding to the whorls of enwrapping meningioma tumor cells under light microscopy. The epithelial nature, such as well-formed desmosomes, is a characteristic ultrastructural feature. The extracellular space of meningioma sometimes contains fine granular materials, mimicking basal lamina. Meningiomas also show basement membrane separating the syncytium from the fibrous septum or the perivascular connective tissue. Rhabdoid or chordoid meningioma can have a thick continuous basal lamina. Schwannoma, also called neurilemoma, neurona, or neurinoma, is relatively rare in the brain with or without cranial nerve-relation. Intracerebral schwannomas not related to cranial nerves are rare, and most cases occur in the first two decades of life. Schwannoma can be diagnosed in children who might be associated with neurofibromatosis type 2, while intracerebral schwannomas have a weak relationship with neurofibromatosis type 2. The ultrastructure of schwannoma is almost exclusively cells with characteristics of differentiated Schwann cells of a neuroectodermal origin. Numerous finger-like cytoplasmic processes are lined by continuous basal lamina with occasional duplication (Fig. 1B). Closely apposed stacks of plasma membrane, i.e., reminiscent of myelin lamellae, are characteristic of schwannoma. Compared to normal collagen fibers of 64-nm periodicity, so-called Luse bodies show more widely spaced collagen fibers with up to 150-nm periodicity and are frequently found in schwannoma. The tumor cells themselves are composed of cigar-shaped or elliptical nuclei containing one or two small nucleoli and rare nuclear bodies. The cytoplasm contains well-developed Golgi complexes, scattered mitochondria, short segments of rough endoplasmic reticulums (RERs), small numbers of ribosomes, and scattered polysomes. Absence of pinocytotic vesicles always happens in schwannoma. Microfilaments, microtubules, and small vesicles are often found, but few mitochondria and ribosomes are found. These ultrastructural characteristics of schwannoma provide diagnostic clues, particularly regarding small cell changes in schwannoma or small cell malignant peripheral nerve sheath tumors. Ependymoma occurs mainly in the ventricular system, and infratentorial ependymomas occur predominantly in children, although development of ependymomas can occur at any age. Ultrastuctural findings of a well-developed ependymal tumor, which is likely derived from ependymal cells lining the CNS ventricular system, show both epithelial and astrocytic features, and the tumor cells of grade I and II ependymal tumors resemble typi-
Ultrastructure of Pediatric CNS Tumors

Cell ependymocytes, while anaplastic ependymomas are poorly differentiated with minimal evidence of such ependymal differentiation. Ependymal differentiation includes well-developed junctions, such as zonula adherens or occludens, villous projections, and cilia in a 9+2 arrangement of microtubules (Fig. 1C). The centriole or blepharoplast is located in the basis of the cilia; in the cytoplasm, microtubules or glial filaments are present in the perikaryal area or cytoplasmic processes. Basal lamina is observed in the ependymoma and around blood vessels but not around tumor cells. However, all of the above-mentioned findings are not specific for ependymomas; these ultrastructural findings are shared by angiocentric glioma, i.e., monomorphous angiocentric neuroepithelial tumor, composed of bipolar spindle cells and epithelioid round cells although the occurrence of angiocentric glioma has not yet been reported in children. An angiocentric glioma is composed of infiltrating round, monopolar epithelioid cells arranged in a perivascular arrangement and bipolar spindle-shaped glial cells. Epithelioid monopolar cells showing microlumina filled with numerous microvilli and some cilia with a 9+2 or abnormal 10+2 configuration. Intermediate junctions of complex interdigitating membranes and basal lamina have also been observed. Ependymomas and angiocen-

Fig. 1. (A) Meningioma shows closely apposed oval- to spindle-shaped tumor cells having interdigitating cell processes lined by well-formed desmosomes (×8,000). Inset indicates tonofilaments attached to the desmosomal plaques (×30,000). (B) Schwannoma shows abundant reduplicated continuous basal lamina surrounding the interdigitating cell processes (×3,500). Note the extracellular long-spacing collagen (arrow) and high power view of reduplicated basal lamina (inset, ×6,500). (C) Ependymoma reveals spindle cells with numerous cytoplasmic processes filled with bundles of intermediate filaments (×4,000). Inset shows well-formed zonula occludens with surface microvilli (×15,000). (D) Pilocytic astrocytoma shows bipolar cells with surface microvilli and cilia in the electron-lucent extracellular space (×9,000). Note some intracellular microlumen.

(Continued to the next page)
tric glioma share molecular cytogenetic alterations, as indicated by shared ultrastructural features. These findings suggest that angiocentric glioma belongs to a lineage of ependymal tumors.

Pilocytic astrocytoma is a commonly encountered CNS tumor in children, and the most common site of occurrence is the sellar region. In contrast, pituitary adenoma, meningioma, and metastatic carcinoma are common tumors in adults but are rarely encountered in children. Pilomyxoid astrocytoma and pilocytic astrocytoma share pathogenetic and clinicopathologic features; BRAF oncogene activation through KIAA1549-BRAF fusion most commonly found in pilocytic astrocytoma has also been described in pilomyxoid astrocytoma. As with light microscopy, irregularly shaped, amorphous, granular electron-dense Rosenthal fibers are commonly found in pilocytic astrocytoma under EM. These Rosenthal fibers are closely located in the glial intermediate filaments. Pilomyxoid astrocytoma showing a monomorphic histologic appearance more commonly occurs in infants and young children compared with pilocytic astrocytoma. Ultrastructurally, pilomyxoid astrocytomas have two morphologically distinct cell types; one is spindle cells showing neurite-like features, and the other is spindle cells showing overt astrocytic morphology (Fig. 1D).

(Continued from the previous page)

Fig. 1. (Continued from the previous page) (E) Astrocytoma shows loosely scattered round to oval cells having numerous long cytoplasmic processes filled with bundles of glial filaments and scarce other organelles (×2,500). (F) Glioblastoma shows many pleomorphic spindle and oval cells with numerous cytoplasmic processes containing bundles of intermediate filaments with surface microvilli-like differentiation (×2,500). (G) Medulloblastoma shows that loosely arranged oval-shaped tumor cells project cytoplasmic processes forming rosettes filled with glial filaments and dense core granules indicating neuroglial differentiation (×9,000). (H) Neuroblastoma reveals that closely packed polygonal to spherical tumor cells have numerous, thin, electron-lucent cell processes forming an interlacing meshwork between groups of cell bodies (×9,000). Inset shows longitudinally-oriented 20 nm microtubules (white arrow) and dense core granules (black arrow, ×15,000).
histologic and molecular cytogenetic findings, pilomyxoid astrocytoma relating to pilocytic astrocytoma and other glioneuronal tumors remain undefined and controversial. With progression of WHO grade in astrocytic tumors, there are sparser glial filaments and more irregular microvillus-like cell projections in anaplastic astrocytoma or glioblastoma, compared to diffuse astrocytoma (Fig. 1E, F). Pediatric glioblastomas are rarely encountered.35-37 Excluding components of gliosarcoma, pediatric brain sarcomas are rare. However, various types of primary intracranial sarcomas can occur in the absence of radiation history.38,39 Although rare cases of rhabdomyosarcoma or chondrosarcoma have also been described, most reported cases in children are fibrosarcomas.40 Proliferation of spindle cells resembling meningioma on immunohistochemistry and light microscopy but with a classical herring-bone pattern suggests fibrosarcoma. Fibrosarcoma is composed of fibroblast-like spindle cells with well-developed, abundant dilated RERs and prominent Golgi complexes.41 Small patches of basal lamina materials lining some tumor cell surfaces are observed in rare cases. Features of myoid differentiation have not been observed.

![Image of tumor cells](http://jpatholtm.org/)
SMALL ROUND CELL CATEGORY OF PEDIATRIC CENTRAL NERVOUS SYSTEM TUMORS

In this group, small round cell pediatric CNS tumors include medulloblastoma, CNS primitive neuroectodermal tumor (PNET)/embryonal tumor with abundant neuropils and true rosettes, atypical teratoid and rhabdoid tumor (AT/RT), and neuroblastoma. Medulloblastoma is a common malignant primary brain tumor in children, categorized as a PNET of the cerebellum, i.e., an undifferentiated tumor exhibiting classic undifferentiated multipotent tumor cells showing myoblastic, neuronal, glial, and melanotic differentiation observed under light microscopy, immunohistochemistry, and EM. A broad spectrum of neural differentiation has been identified in nearly all cases of medulloblastoma. Therefore, there is a spectrum in which the most undifferentiated area might have large undifferentiated cells compared to more differentiated areas exhibiting neuroblastic differentiation. Ultrastructurally, medulloblastoma is composed of primitive cells having a high nuclear-cytoplasmic ratio, and those cells that lack distinguishing ultrastructur-
al findings such as tightly packed poorly differentiated oval to polygonal tumor cells with large nuclei; Rosenthal fibers, i.e., astrocytic differentiation; or neuronal differentiation such as rudimentary synaptic junctions or dense core granules (Fig. 1G). The central acellular area is composed of centrally projected broad cell processes, forming Homer-Wright rosettes. These central acellular rosettes composed of cytoplasmic processes are found in other tumors such as neuroblastoma, neurocytoma, and ependymoma.25,30,31 Glial intermediate filaments fill the cell processes in an ependymoma or medulloblastoma with glial differentiation, while microtubules are found in tumors of neuronal differentiation such as neurocytoma or neuroblastoma (Fig. 1H).43,51,52

PNET was originally described as an undifferentiated neuroepithelial tumor with mesenchymal differentiation and now encompasses tumors showing pluripotentiality toward neuronal, astrocytic, and other cell lines such as those of a mesenchymal lineage (Fig. 1I). However, this entity might be a confusing and controversial factor in the diagnosis and classification of pediatric embryonal tumors. Some cases of PNET mimicking AT/RT have been reported.53 AT/RT, which occurs mainly in children under the age of 3 years and is associated with frequent recurrence, is a malignant rhabdoid tumor (MRT), i.e., a CNS counterpart of renal MRT, belonging to rhabdoid tumor predisposition syndrome. Mutation or deletion of SMARCB1/INI-1/hSNF5/BAF47-tumor-suppressor gene located on chromosome band 22q11.2 inactivates the tumor suppressor gene, resulting in subsequent negative immunostaining in AT/RT but not in other rhabdoid phenotypes of CNS neoplasms, although mutations of INI-1 in some choroid plexus carcinomas have been reported.57,53,54 Immunohistochemistry for INI-1 is actually superior to EM or small biopsy of light microscopy because ultrastructural descriptions of AT/RT are few and lack specific CNS cell components of glial or neuronal lineage (Fig. 1J). Histologically, AT/RT shows various mixed histologies of epithelial, mesenchymal, rhabdoid, and primitive neuroepithelial components, suggesting an origin of immature and pluripotent neuroectodermal cells capable of differentiating along multiple lineages, as demonstrated by EM.55

OLIGODENDROGLIOMA AND OLIGODENDROGLIOMA-LIKE TUMORS

Oligodendrogloma-like tumors, i.e., oligodendrogloma-mimickers, include oligodendroglioma, dysembryoplastic neuroepithelial tumor (DNT), neurocytoma, clear cell ependymoma (CCE), ganglioglioma, and gangliocytoma.25,56-58 Oligodendroglioma is composed of closely apposed round-shaped tumor cells with euchromatic round nuclei and cytoplasm containing some microtubules and few glial filaments (Fig. 1K). Short broad cell processes might be seen within the tumor cells. Cell junctions or surface microvilli are not found in oligodendroglioma.25,59 Among oligodendroglioma-mimickers, neurocytomas have distinct immunohistochemical and ultrastructural characteristics compared with oligodendrogliomas.43,51,60 Both can have microtubules, but the former exhibit neuronal differentiation such as synaptic vesicles or dense core granules. Central and extracellular neurocytoma has been reported as ependymoma of the foramen of Monro or intraventricular oligodendroglioma due to mimicry of oligodendroglioma-like cells under light microscopy.56 Characteristic immunohistochemical findings of rosette-like acellular fibrillary areas stained with neuronal markers such as synaptophysin or NeuN might not be identified in extracellular neurocytomas.61 Ultrastructurally, neurocytoma has numerous thin neuritic processes filled with dense core granules and microtubules with or without synapses (Fig. 1J). DNT consists of neoplastic oligodendroglial-like cells (OLCs) and elongated processes forming a neuropil-like structure in the mucinous extracellular area.30 Ultrastructurally, OLCs have round to oval or elongated nuclei and scanty cytoplasm filled with electron-lucent synaptic vesicles, whereas elongated tumor cells have abundant cellular processes containing scanty microtubules and dense-core granules (Fig. 1M). OLCs of DNT can be distinguished from astrocytes by the lack of glial intermediate filaments and from neuronal cells by the presence of microtubules. Some cells of DNT have cytoplasmic ribosome-lamellae complexes, also found in lymphoid neoplasms or glioblastomas.62,63 These structures have been regarded as astrocytic differentiation but remain elusive. CCE resembling oligodendroglioma and neurocytotic tumor under light microscopy can be distinguished from the latter using EM, which shows intracytoplasmic lumen lined by microvilli, complex cell junctions, and cilia. The clear cell morphology of CCE is caused by organelle-free areas of the cytoplasm with edema and vacuolization.64,65

Ganglioglioma and gangliocytoma are composed of several types of tumor cells; neuronal tumor cells have dense core granules, diagnostically salient features, and synaptic junctions. Spherical protein bodies are found in gangliogliomas.59 Multivesicular bodies, abundant autophagic vacuoles, and dense core vesicles are seen in neoplastic neuronal cells of ganglioglioma and gangliocytomas.56
PAPILLARY TUMORS OF THE CENTRAL NERVOUS SYSTEM

Papillary tumors of the CNS observable under light microscopy include PGNT, tumors of the suprasellar area such as PTPR, pituitary adenoma of papillary configuration, or chordoid glioma of the third ventricle.67–69 PGNTs can occur at any age, and pediatric cases have been reported.67 Ultrastructurally, either astrocytic or neuronal differentiation and poorly differentiated or uncommitted primitive cells are found in PGNT.52,69 PTPR was recently added to the 2007 WHO classification as a rare neuroepithelial tumor of papillary appearance arising in the pineal area.54,69 This tumor has been named papillary pineocytoma or chordoid plexus papilloma due to papillary features and epithelial morphology showing immunopositivity for pancytokeratin and ependymal differentiation. Pediatric occurrence of PTPR is rare. Specialized ependymal cells of the subcommissural organ (SCO) such as lamina terminalis are considered the origin of PTPR because of ultrastructural findings of divergent differentiation of epithelial, ependymal, and neuroendocrine cells. On EM, clear and dark epitheloid cells have an ovoid nuclei and abundant cytoplasm filled with abundant organelles including RERs, dense core vesicles, microtubules, numerous clear and coated vesicles, mitochondria, and intermediate filaments.70 Abundant microvilli and less frequent cilia are found at the apical pole (Fig. 1N). Well-formed junctional complexes are found at the apical portion, and the basal portion is surrounded by a basement membrane. Chordoid glioma of the third ventricle is characterized by clusters and cords of epithelioid cells in a mucinous chordoid matrix. It is a slowly growing glial tumor occurring mainly in adults, although rare cases of pediatric chordoid glioma have been reported.68,71 Chordoid glioma and PTPR share an anatomic location, i.e., circumventricular organ occurrence and subsequent shared ultrastructural findings; secretory vesicles as well as cilia, microvilli, and junctional complexes such as hemidesmosomes, are suggestive of the origin of modified specialized ependymal, i.e., tanycytes of the SCO such as lamina terminalis (Fig. 1O).68,69 Chordoid plexus papilloma shows cuboidal-shaped tumor cells with apical-basal orientation with varying sizes of apical club-like or roundish microvilli filled with glycogen particles and rare cilia with a 9+2 arrangement of microtubules (Fig. 1P).55,72,73 The neoplastic cells contain numerous free ribosomes, glycogen granules, and RERs. Elongated junctional complexes were occasionally seen near the apical ends. The basal portions of the tumor cells are lined with a continuous basal lamina. These apical cilia or glycogen particles are more often seen in infantile choroid plexus papillomas than in those of older age.72

RHABDOID CELL TUMORS

Rhabdoid cells are designated as large cells with eccentrically located nuclei and well-demarcated abundant, eosinophilic globular inclusions with characteristic immunoreactivity for vimentin, keratin, and epithelial membrane antigen, which ultrastructurally correspond to paranuclear whorls of intermediate filaments. These rhabdoid changes can appear in various neoplasms from diverse organ sites.54,75–77 In the CNS, most rhabdoid tumors occur in the infratentorial posterior fossa of very young children. Histological diagnosis of an MRT depends on identification of characteristic rhabdoid choroid plexus carcinoma, an extremely rare variant of choroid plexus carcinoma, belonging to choroid plexus tumor; however, carcinoma can lose its papillary pattern, and this ill-defined growth pattern with small foci of epithelial differentiation can make diagnosis challenging and mimic AT/RT due to overlapping morphological, immunohistochemical, and ultrastructural features, except for INI-1 expression.54,55,74 Like other MRT, EM shows the typical rhabdoid cells with paranuclear whorls or bundles of intermediate filaments as well as reminiscent retention of choroid plexus differentiation.73 These rhabdoid features can be seen in rhabdoid meningioma, ependymoma, glioma, or germ cell tumors and even in metastatic rhabdoid melanoma.55,75,76

PLEOMORPHIC CELL TUMORS

CNS tumors showing pleomorphic features under light microscopy include pleomorphic xanthoastrocytoma (PXA), glioblastoma, AT/RT, or undifferentiated primitive tumors.63,77–78 Tumors such as AT/RT or undifferentiated primitive tumors were previously discussed in the section on small round cell tumors. PXA that is prevalent in children belongs to an astrocytic lineage and appears as irregularly-shaped heterochromatic nuclei and abundant cytoplasm filled with lysosomes, lipid droplets, and glial filaments.53 Ultrastructurally, PXA is composed of two types of cells; spindle-shaped astrocytic cells and bizarre giant cells filled with glial filaments and lipid droplets; the astrocytic tumor undergoes neuronal differentiation. Basal lamina surrounds the individual tumor cells or in groups, in contrast to other astrocytic tumors. Cytoplasmic lysosomes and ribosome-lamellae complexes are predominant in PXA, as in DNT, lymphoid leukemia and glioblastoma.62,63
CONCLUSION

Despite declining usage, EM retains its diagnostic usefulness in neuropathology, particularly in distinguishing histological look-alikes, poorly differentiated or undifferentiated CNS neoplasms. When there is an overlap in the immunohistochemical profiles between CNS tumors, ultrastructural examination serves to confirm the concrete diagnosis even if the components of surrounding non-neoplastic cells may be misinterpreted as those of the tumor cells.

In this article, we summarized and reviewed diagnostic ultrastructural findings of CNS neoplasms commonly found in children.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The authors are very grateful to Professor Je G. Chi, who passed away last winter. He was a great mentor and friend to all of us. This work is dedicated to his memory.

REFERENCES

22. Kim NR, Ha SY, Cho HY. Utility of transmission electron microsco-

Dysembryoplastic Neuroepithelial Tumors

Yeon-Lim Suh

Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Received: September 16, 2015
Accepted: October 5, 2015

Corresponding Author
Yeon-Lim Suh, MD, PhD
Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-2800
Fax: +82-2-3410-0025
E-mail: ylsuh76@skku.edu

Dysembryoplastic neuroepithelial tumor (DNT) is a benign glioneuronal neoplasm that most commonly occurs in children and young adults and may present with medically intractable, chronic seizures. Radiologically, this tumor is characterized by a cortical topography and lack of mass effect or perilesional edema. Partial complex seizures are the most common presentation. Three histologic subtypes of DNTs have been described. Histologically, the recognition of a unique, specific glioneuronal element in brain tumor samples from patients with medically intractable, chronic epilepsy serves as a diagnostic feature for complex or simple DNT types. However, nonspecific DNT has diagnostic difficulty because its histology is indistinguishable from conventional gliomas and because a specific glioneuronal element and/or multinodularity are absent. This review will focus on the clinical, radiographic, histopathological, and immunohistochemical features as well as the molecular genetics of all three variants of DNTs. The histological and cytological differential diagnoses for this lesion, especially the nonspecific variant, will be discussed.

Key Words: Dysembryoplastic neuroepithelial tumor; Epilepsy; CD34; Microtubule-associated protein 2; BRAFV600E mutation

This tumor was originally recognized in patients who underwent surgery for treatment of medically intractable seizures; however, recent progress in neuro-imaging has allowed for increased detection of dysembryoplastic neuroepithelial tumors (DNTs) in patients with a single episode of epilepsy or in older patients. The original report in 1988 by Daumas-Duport et al. describes morphologically unique features, including intracortical multi-nodularity, a specific glioneuronal (GN) element, and association with focal cortical dysplasia (FCD). The term “dysembryoplastic neuroepithelial tumor” was introduced for this unique tumor because tumors have a number of clinicopathological features, strongly suggesting a dysembryoplastic origin such as early onset of seizure, presence of FCD in the adjacent cortex, and deformity of the overlying skull. The generic term “neuroepithelial tumors” was used so that a large range of morphologic variants could be integrated into this entity.

The complex type of DNTs was first categorized as neuronal and mixed neuronal-glial tumors in the 1993 World Health Organization (WHO) classification of central nervous system (CNS) tumors. Additionally, simple and nonspecific histologic variants of DNTs have been described. The simple types of DNTs consist of only specific GN elements and the complex types are characterized by specific GN elements associated with glial nodules and/or FCD. Nonspecific types of DNTs lack multinodular architecture and specific GN elements, but show similar histologic findings to those seen in glial nodules of complex DNTs. Nonspecific DNTs have been controversial because their histology is indistinguishable from conventional gliomas and because of the lack of a specific GN element and/or multinodularity of typical DNTs. The 2007 WHO classification of CNS tumors includes the simple and complex subtypes of DNT. However, several studies demonstrated three histologic forms of DNTs under the different terms “multinodular, solitary nodular, and diffuse” or “simple, complex, and diffuse.” The frequent immunoreactivity of CD34, nestin, and microtubule-associated protein 2 (MAP2) and the identification of BRAFV600E mutation in nonspecific DNTs suggest that DNTs exhibit a broad spectrum of histopathology from simple to nonspecific forms.

A large series of DNTs demonstrated intrinsic epileptogenicity of DNTs in three histologic subtypes by intralesional recordings and simple and complex types showed localization of the epileptogenicity to the tumor, but non-specific temporal DNTs showed more extensive areas with the epileptogenicity. In their series, FCD was found in approximately two-thirds of patients with DNTs and was more common in nonspecific (85%) than in complex types (47%).

CLINICAL FEATURES

DNTs are found in approximately 17.8%–20% of patients...
who undergo surgical resection for chronic epilepsy.11,12 DNTs are the second most common tumors in surgically resected cases for intractable epileptic seizures.13,14 Gangliogliomas and DNTs account for \(65\%\) of 1,551 tumors collected at the European Epilepsy Brain Bank.15 DNTs comprised \(87\%\) of 31 cases with tumor-associated, temporal lobe epilepsy.15 In children (below 18 years of age), the frequency of DNTs was reported to be \(0.6\%\) among \(340\) primary CNS tumors.16 In another report, the estimated prevalence of DNTs was \(0.8\%\) in 233 children with hematopoietic problems.17

Partial complex seizures are the most common clinical manifestation, followed by generalized tonic-clonic, simple partial, and partial seizures with secondary generalization.18 Secondary generalized seizures are more common in simple DNT cases.6 An additional neurologic symptom is headache only. Over \(90\%\) of patients with DNTs have epilepsy before the age of 20 years.11 In one of the largest series, the mean age at seizure onset and surgery was 14.6 years (range, 3 months to 54 years), and 30.5 years (range, 6 to 65 years), respectively, with no significant difference among the DNT types.6 In pediatric DNTs, the mean age at seizure onset and surgery was 8.1 years (2 months–14 years) and 12.4 years (3.25–18.5 years), respectively.19 Patients generally do not have neurological deficits or evidence of elevated intracranial pressure. Males are more frequently affected, and tumors have a predilection for the temporal lobe, followed by the frontal and parietal or occipital lobes. Multifocal DNTs affecting the different sites in the CNS have been reported20 and unusual locations for DNTs include the septum pellucidum, caudate nucleus, thalamus, pons, cerebellum, brainstem, and ventricles.21-23 Familial occurrence of DNTs has been described.24

Lesionectomy alone controls seizures and tumors in most cases.25 Seizure recurrence is associated with the presence of residual tumors or FCD in the peritumoral cortex. Therefore, complete removal of tumors and FCD in the adjacent cortex achieves seizure-free outcomes.19 Chassoux et al.26,27 reported that favorable prognostic factors for seizure-free outcomes are complete removal of tumor and epileptogenic zones, shorter epilepsy duration, and absence of cortico-subcortical damage at the resection site. The surgical outcome is not different in the three histological types of DNTs. Rarely, tumor recurrence has been reported in cases with gross total or subtotal resection. The histology of recurrent tumors is found to be similar to those of primary tumors. Malignant transformation into high-grade astrocytoma is also reported and may be induced by radiation therapy.6,28 Aggressive histopathological findings such as increased mitosis, necrosis, microvascular proliferation or high Ki-67 labeling index, and incomplete removal of tumors have not correlated with poor outcomes.

NEUROIMAGING

Cortical topography and the lack of mass effect and perilesional edema are common characteristics of neuroimaging.29 In a large series of DNT, cystic change (23.9%), expansion of the overlying calvarium (19.5%), focal enhancement (19.5%), and calcification (15.2%) are common radiologic features.6 On non-contrast computed tomography scans, tumors are hypodense with a cystic appearance in half of the cases and can appear as a calcific hyperdensity and frequently show focal contrast enhancement. Deformity can also be seen in the overlying calvarium that is indicative of chronic focal pressure. Magnetic resonance imaging (MRI) shows a well-delineated tumor with pseudocystic or multicystic appearance, and low signal intensity on T1-weighted images but high signal intensity on T2-weighted images. Focal ring enhancement can rarely be seen on contrast-enhanced T1-weighted images.

Recently, MRI features in histologic variants of DNTs are classified into three types as follows: type 1 (cystic/polyctasic-like, well-delineated, strongly hypointense on T1), type 2 (nodular-like, heterogeneous signal), or type 3 (dysplastic-like, isosignal/hyposignal T1, poor delineation, gray-white matter blurring)29 (Fig. 1A–F). Simple or complex DNTs are always seen as type 1 on MRI, whereas nonspecific DNTs are seen as either type 2 or type 3 on MRI. Epileptogenic zones are found to be significantly different among MRI subtypes. The epileptogenic zone co-localizes to the tumor in type 1 MRI and involves the peritumoral cortex in type 2 MRI, while there are more extensive areas involved in type 3 MRI.

HISTOPATHOLOGY

Lesions vary in size from 10 to 25 mm, although occasionally larger tumors of up to 70 mm have been reported.11 Grossly, tumors appear as well-defined, solitary nodular masses or poorly demarcated lesions (Fig. 2A). On the cut section, most tumors are cortically located and may extend into the underlying subcortical white matter in larger tumors. Multi-nodular appearance or cystic changes are commonly found (Fig. 2B, C).

Among three histologic variants of DNTs (Fig. 3), both simple and complex subtypes are characterized by the presence of specific GN elements that consist of small, round monotonous cells, so-called oligodendroglioma-like cells (OLCs) and floating neurons in an abundant mucinous matrix. The specific GN ele-
ments may form typical nodules (Fig. 3A), but they may also show a diffuse pattern. The OLCs are arranged in a columnar pattern perpendicular to the cortical surface and separated by a mucinous matrix. Depending on the amount of mucinous matrix in the specific GN elements, OLCs may show their arrangement in various patterns including microcystic, alveolar, com-

Fig. 1. Three different types of magnetic resonance imaging in dysembryoplastic neuroepithelial tumors. (A, B) Type 1 shows a well-delineated, polycystic-like tumor with strongly hypointense on T1- and hyperintense on T2-weighted images. (C, D) Type 2 shows a nodular-like, heterogeneous lesion. (E, F) Type 3 shows a poorly delineated, dysplastic-like, iso/hyposignal T1 with gray-white matter blurring. Type 1 is mainly found in simple or complex forms, and type 2 and 3 are observed in nonspecific forms. (A, C, E) T1-weighted images. (B, D, F) T2 FLARE images.
Dysembryoplastic Neuroepithelial Tumors

Floating neurons that are observed within the mucin pool typically lack perineuronal satellitosis or nuclear atypia (Fig. 3E). The simple type of DNT consists only of the specific GN elements, and the complex type additionally has glial nodules and/or FCD of the adjacent cortex. The glial nodules show morphological similarity to low-grade gliomas, including oligodendroglioma, astrocytoma, mixed oligoastrocytoma, pleomorphic xanthoastrocytoma, and pilocytic astrocytoma (Fig. 3F, G). Frank nuclear atypia and multinucleated cells are commonly observed in glial components (Fig. 3H). The internodular areas are frequently abnormal, and may contain oligodendrogial and/or astrocytic components, although in some tumors, they are normal. Nonspecific DNT consists of poorly demarcated, diffuse cortical lesions with blurred normal anatomical landmarks (Fig. 3I). The various glial components seen in this type of DNT are similar to those seen in the glial nodules of the complex forms of DNTs or resemble diffuse components observed in the internodular areas of classical multi-nodular DNTs.3,5,12 Nuclear pleomorphism of glial cells is commonly found in all three types of tumors and predominantly affects the astrocytic component. In one of the largest series studied, rarefaction of the underlying white matter (34%), leptomeningeal involvement (51%), and hemosiderin pigmentation (53%) are frequently found but are less common in simple DNTs. Calcification (25%) is not uncommon. Necrosis, mitosis, and microvascular proliferation are rarely observed.6 Foci of FCD in the adjacent neocortex are found in roughly two-thirds of DNT cases.11

IMMUNOHISTOCHEMISTRY

In specific GN elements, floating neurons have expressed neuronal markers including synaptophysin neurofilament, NeuN, neuron specific enolase, MAP2, and class-III beta-tubulin (Fig. 4A, B). The majority of OLCs are strongly positive for S-100 protein and Oligo-2 but generally negative for glial fibrillary acidic protein (GFAP) (Fig. 4C, D). Rarely, OLCs may show immunexpression of NeuN. Glial nodules contain variable numbers of GFAP-positive astrocytes. In the nonspecific type of DNTs, synaptophysin granular staining is slightly decreased in
Fig. 3. Histopathological findings of dysembryoplastic neuroepithelial tumors (DNTs). (A) Multi-nodular appearance typical of complex DNTs. (B) Column arrangement of oligodendroglioma-like tumor cells (OLCs) in the specific glioneuronal element. (C) The characteristic appearance of DNTs with OLCs and mature neurons. (D) Targetoid structure of the specific glioneuronal element. (E) Floating neurons in the mucinous matrix. (F) The histology of glial nodules resembling oligodendroglioma. (G) This glial nodule with predominantly astrocytic differentiation. (H) Nuclear pleomorphism in glial component of DNTs.

(Continued to the next page)
Dysembryoplastic Neuroepithelial Tumors

The lesion compared with that seen in the adjacent normal cortex (Fig. 4E). Other neuronal markers except MAP2 are negative in nonspecific DNTs, but MAP2 is frequently expressed.\(^8\) The expression of CD34 has been reported in 25% to 61% of cases.\(^6-8\) In our study, CD34 expression was more frequently observed in nonspecific types (83.3%) than in simple (10%) and complex types (30.8%). CD34 was positive in the neuronal cell membrane, pericellular stroma, and cytoplasm of OLCs and stellate cells with astroglial morphology (Fig. 4F). CD34 positive cells were focally identified in specific GN elements, whereas most nonspecific tumors and glial nodules of some complex DNTs showed a focal, multifocal, or diffuse pattern of CD34 immunoreactivity (Fig. 4G, H). CD34 was expressed in the peritumoral cortex (Fig. 5A–C), which is more frequent in nonspecific (94.4%) than in classic (26.1%) DNTs. Different expression patterns of nestin and MAP2 in three subtypes of DNTs have also been demonstrated.\(^8,30\) Combined analysis of CD34 and MAP2 is useful in differential diagnosis between nonspecific DNTs and diagnostically challenging mimickers, which will be discussed in the section on differential diagnosis. The Ki-67 labeling index is generally low, below 1% or 2%. The immunohistochemical detection of \(BRAF^{V600E}\) has been described in 30% of DNTs, including specific and nonspecific tumors.\(^31\) \(BRAF^{V600E}\) immunostaining is diffusely and strongly positive in glial nodules and usually negative in the floating neurons. However, dysplastic neurons show strong \(BRAF^{V600E}\) immunoreactivity in complex DNTs associated with FCD.

ULTRASTRUCTURAL FINDINGS

Ultrastucturally, OLCs exhibit round to oval invaginated nuclei with evenly dispersed chromatin, marginally condensed heterochromatin, and frequently a single small nucleolus (Fig. 6A). The cytoplasm of OLCs has scanty numbers of organelles, such as rough endoplasmic reticulum, mitochondria, microtubules, and clear vesicles. Unlike oligodendrogial cells, OLCs do not show abundant microtubules, although oligodendroglial differentiation such as pericellular lamination of cell processes has been demonstrated in one case.\(^33\) OLCs may show features of neuronal differentiation.\(^33\) The neuronal features include scant dense core granules (45–60 µm), clear vesicles, synaptic junctions, or neuropil-like cellular processes (Fig. 6B, C). OLCs may show astrocytic features with small numbers of intermediate filaments. Ganglion cells are also observed but never exhibit the dysplastic features or abundant dense core granules of gangliogliomas. Ribosome-lamellae complexes can be found in a few OLCs (Fig. 6D). They are cylindrical and resemble “laboratory tubes with cone-like endings.”\(^33\) The presence of these inclusions in OLCs suggests an astrocytic differentiation, because they have been demonstrated in tumors of astrocytic lineage, including glioblastomas.

SQUASH CYTOLOGICAL FEATURES

The cytological features of squash preparations of DNT during intraoperative consultation are fairly characteristic and reliable for correct intraoperative diagnosis, which helps to determine the appropriate neurosurgical procedure. The floating neurons and extracellular mucin that are typical of DNT are more easily demonstrated in cytological preparations than in frozen sections\(^34\) (Fig. 7A, B). OLCs appear as aggregates or are dispersed around abundant arborizing capillaries or in the mucinous or focal fibrillary background. Round to oval naked nuclei of OLCs are larger than non-neoplastic and neoplastic oligodendrocytes. Cytologically, distinguishing features of OLCs from oligodendrogliomas include frequent indentation of the
Fig. 4. Immunohistochemical findings of dysembryoplastic neuroepithelial tumors (DNTs). (A, B) Floating neurons are positive for synaptophysin (A) and phosphorylated neurofilament (B). (C, D) The oligodendroglioma-like cells (OLCs) are diffusely positive for S-100 (C) but negative for glial fibrillary acidic protein (D). (E) Nonspecific DNTs show slightly decreased synaptophysin granular staining compared with that seen in the adjacent normal cortex. (F) In the specific glioneuronal element, CD34 is expressed along the perikarya and in membrane of the floating neurons, pericellular stroma, and cytoplasm of OLCs. (G, H) The specific glioneuronal element shows cluster staining pattern of CD34 (G), while diffuse CD34 immunoreactivity in glial nodules of complex DNTs (H).
Fig. 5. The histology and CD34 immunoreactivity of focal cortical dysplasia (FCD) in the peritumoral cortex. (A) Dysplastic neurons and abnormalities in cortical lamination are observed. (B, C) CD34 immunoreactivity patterns of FCD are similar to that seen in dysembryoplastic neuroepithelial tumors.

Fig. 6. Ultrastructural findings of dysembryoplastic neuroepithelial tumors. (A) Oligodendroglioma-like cells (OLCs) show oval nuclei with small indentation, marginal aggregates of heterochromatin, and their cytoplasm with scanty organelles (×7,000). (B, C) Neuropil-like network of cellular process with a synaptic contact (arrow) (B, ×17,000) and scant dense core granules (arrow) (C, ×30,000) indicates neuronal differentiation of OLCs. (D) A few OLCs contain ribosome-lamellae complex inclusions (arrow) (×7,000).
nuclear membrane and multiple, small nucleoli (Fig. 7C). The nuclei of oligodendrogliomas are round with a smooth outline and contain one or two occasional nucleoli (Fig. 7D). The presence of eosinophilic granular bodies in the background favors DNTs rather than oligodendrogliomas.

DIFFERENTIAL DIAGNOSIS

Histologically, the recognition of a unique, specific GN element in brain tumor samples from patients with medically intractable, chronic epilepsy serves as a diagnostic feature for complex or simple forms of DNT. The appreciation of unique histological features may be difficult in fragmented specimens. The nonspecific forms, which lack specific GN elements and multi-nodular architecture, are often not distinguished from epilepsy-associated gliomas. Prominent perineuronal satellitosis and subpial aggregates of tumor cells favor gliomas, although a limited degree of secondary structure formation can be seen in DNTs. Distinguishing DNTs, particularly simple and nonspecific types, from gangliogliomas is often difficult because of overlap in their clinicopathological features, including an association with FCD. Gangliogliomas can be distinguished by the presence of neuronal atypia, perivascular lymphocytic infiltration, and reticulin networks surrounding glial cells. DNTs may rarely

Fig. 7. Squash cytological findings of dysembryoplastic neuroepithelial tumors. (A) Squash preparation shows round, oval to elongated naked nuclei in the mucinous background. (B) The nuclei of oligodendroglioma-like cells (OLCs) are irregular with small indentations or deep grooves, and fine, granular chromatin and 1–4 small nucleoli. There is a large, normal-looking neuron in the mucinous background. (C) OLCs shows multinucleate giant cell formation (inset) and an intranuclear pseudoinclusion. (D) Squash preparation of oligodendroglioma shows smaller, dark nuclei without nucleoli and larger nuclei with granular chromatin and micronucleoli.
show perivascular lymphocytic infiltration and mild neuronal atypia, but they do not show reticulin deposition within tumors.

It is important to differentiate DNTs from gliomas or gangliogliomas that may undergo malignant transformation. Combined immunostains for CD34 and MAP2 can facilitate the differential diagnosis between DNTs and epilepsy-associated tumors that mimic DNTs. Nonspecific DNTs and gangliogliomas share similar immunoreactivity patterns for CD34, but show different immunoreactivity for MAP2 in their glial components. MAP2 immunostaining is faintly positive or negative in the glial component of gangliogliomas, whereas it is frequently seen in DNTs. Most ordinary glial tumors, such as astrocytomas and oligodendrogliomas, are diffusely positive for MAP2 but negative for CD34. The “isomorphic subtype of long-term epilepsy-associated astrocytomas” described by Blumcke et al. shows the absence of both MAP2 and CD34 immunoreactivity. Since BRAFV600E mutations have not been detected in oligodendrogliomas, identification of BRAFV600E mutation by immunohistochemistry or molecular study has diagnostic utility for distinguishing DNT from oligodendroglioma.

GENETICS

In a study of 13 DNTs, none of the tumors showed 1p19q deletion, IDH1-2, or p53 mutation, but a large series of DNTs found IDH1 mutation in three cases, loss of heterozygosity (LOH) 1p/19q in 10 cases, isolated LOH 19q in two cases, LOH 10q (PTEN locus) in three cases, and combined LOH 1p/19q and 10q in one case. Other studies, however, including this one, did not show IDH1 mutation. IDH2 mutation or epidermal growth factor receptor amplification has not been identified. Recently, BRAFV600E mutations were identified in 30%–51% of DNTs. In our study, the frequency of BRAFV600E in DNTs was related to the location of tumors and was more frequent in extratemporal location (68.2% vs 57.9%). BRAFV600E mutation was more common in classical DNTs (59.4%) than nonspecific DNTs (36.8%). Recently, copy number aberrations (CNAs) have been identified in DNTs, and the most frequent are gains at chromosomes 5 and 7, often concurrent, and at chromosome 6. CNAs in DNTs are not correlated with their histological subtypes, CD34 expression or clinical features.

HISTOGENESIS

DNTs were initially believed to be a hamartoma in nature, but recent identification of genetic alterations in DNTs, including classical and nonspecific types, indicate that this tumor is a neoplastic condition. The histogenesis of DNTs remains unknown. The developmental origin from the secondary germinal layer has been proposed based on the mixed cellularity of DNTs, their preponderance in the temporal lobe, and their association with FCD. The origin of DNTs from pluripotent precursor cells is also suggested based on ultrastructural findings of OLCs showing neuronal and glial differentiation. This hypothesis is supported by the immunoexpression of both nestin and MAP2 in OLCs, which has been identified in neural and glial precursor cells during human development. Higher expression levels of nestin, MAP2 and CD34, stem cell markers, in nonspecific rather than simple or complex DNTs suggests an earlier developmental origin of the nonspecific DNTs.

Because DNTs share CD34 expression, BRAFV600E mutations, and chromosomal copy number profiles with gangliogliomas, and occurrence of composite tumors with ganglioglioma and DNT, both tumors may represent different morphological variants of the same tumor entity.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The authors are very grateful to Professor Je G. Chi, who passed away last winter. He was a great mentor and friend to all of us. This work is dedicated to his memory.

REFERENCES

5. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classifica-
Neuroendocrine tumors of the female reproductive tract are rare and account for about 2% of all gynecologic cancers. These tumors are a heterogeneous group of neoplasms that show various histologic findings and biologic behaviors. The four-category scheme proposed by Travis et al. with respect to lung NETs in 1991 includes typical carcinoid tumor (TC), atypical carcinoid tumor (AC), large cell neuroendocrine carcinoma (LCNEC), and small cell neuroendocrine carcinoma (SCNEC), and is also applied to NETs of the female reproductive tract. Regardless of the organ of origin, the morphologic features of these four subtypes are similar to those of their pulmonary counterparts. Two clinically and histologically distinct types of small cell carcinoma of the ovary have been described: pulmonary and hypercalcemic. Although hypercalcemic-type small cell carcinoma is not a NET, it has been included here because the terminology ‘small cell carcinoma’ frequently results in its misclassification as a subtype of neuroendocrine carcinoma (NEC).

This review describes the classification and clinicopathologic characteristics of NETs of the female reproductive tract. Differential diagnoses are discussed, especially for non-NETs showing high-grade nuclei with neuroendocrine differentiation. This review also discusses recent advances in our pathogenetic understanding of these disorders.

Key Words: Neuroendocrine tumors; Carcinoma, neuroendocrine; Gynecologic tract; Female reproductive tract

Classification of cervical NETs

Cervical NETs have been described using various terminologies without strict diagnostic criteria, such as carcinoid tumor, argyrophil cell carcinoma, apudoma, poorly differentiated small cell carcinoid, small cell tumor with neuroepithelial features, neuroendocrine carcinoid tumor, endocrine carcinoma intermediate cell type, small cell undifferentiated carcinoma, oat cell carcinoma, small cell carcinoma, SCNEC, NEC, neuroendocrine features in poorly differentiated and undifferentiated carcinoma, large cell carcinoma, and LCNEC. These varied terminologies have led to poor recognition of the incidence, clinicopathologic features, and biologic behavior of cervical NETs.

The present four-category classification of cervical NETs composed of TC, AC, LCNEC, and SCNEC was established in 1997 by the College of American Pathologists and the National Cancer Institute and has been used as the World Health Organization (WHO) classification scheme since 2003. SCNEC is by far the most common cervical NET.
the most common NET of the cervix, followed by LCNEC. Cervical TCs are extremely rare. Briefly, TCs show trabecular, insular, or sheet-like architectural patterns. The small, round, and uniform tumor cells have a finely granular chromatin pattern and inconspicuous nuclei. Mitotic activity is exceedingly low. ACs share patterns of growth with TC, but show hypercellularity, cytologic atypia, increased mitotic activity (five to 10 mitotic figures per 10 high power fields [HPFs]), and necrotic foci. LCNECs grow in sheets with organoid, trabecular, or cord-like patterns, often with peripheral palisading and necrosis. These large neoplastic cells have abundant eosinophilic cytoplasm with vesicular high-grade nuclei and prominent nucleoli. This tumor type has more than 10 mitotic figures per 10 HPFs. Immunohistochemical confirmation of neuroendocrine differentiation is required based on neuroendocrine markers, such as chromogranin, synaptophysin, and CD56. SCNECs show small, round or fusiform cells with scant cytoplasm and hyperchromatic nuclei, with finely granular chromatin, and absent or inconspicuous nucleoli. Nuclear molding, numerous mitotic figures, and apoptotic bodies are common. Architectural patterns include nesting, trabecular, peripheral palisading, rosette formations, and sheet-like growth. Immunohistochemical staining for neuroendocrine markers is not required for diagnosis.

The WHO classification of gastroentero-pancreatic NETs is a three-tiered grading system, primarily based on tumor mitotic activity and Ki-67 labeling index. Ki-67 labeling index is also incorporated in the recent WHO classification of pulmonary NETs. However, the Ki-67 index is not included in the 2014 WHO diagnostic criteria for cervical NETs. Further study is required to validate the correlation between Ki-67 index and clinical outcomes in cervical NETs.

Carcinoid tumors

Primary cervical carcinoid tumors are extremely rare, and metastatic carcinoids should be excluded to ensure a diagnosis of primary cervical carcinoid tumor. In 1976, Albores-Saavedra et al. reported 12 cases of ‘carcinoid’ tumor, dividing them into well-differentiated and poorly differentiated types based on microscopic findings. Cancers resembling islet cell tumors or medullary thyroid carcinoma were diagnosed as well-differentiated ‘carcinoid,’ while those similar to oat cell carcinoma of the lung were diagnosed as poorly differentiated ‘carcinoid.’ These authors appear to have used ‘carcinoid’ as a comprehensive term for NET.

Generally, the prognosis of TC and AC is better than that of LCNEC and SCNEC. The prognosis of cervical TC is uncertain due to confusing usage of diagnostic terminology and limited follow-up data. Cervical AC is regarded as an aggressive tumor, like SCNEC and LCNEC. AC and LCNEC can be differentiated based on mitotic activity, nuclear atypia, and extent of necrosis. Due to the overlapping histologic features of these tumors, differentiating between AC and LCNEC can be problematic.

Neuroendocrine carcinomas

LCNEC and SCNEC comprise about 2% of cervical carcinomas and are highly aggressive, even at early stages. Due to the aggressive clinical behaviors of both SCNEC and LCNEC, the clinical significance of subdividing cervical NECs is uncertain. NECs are regarded by some as a different morphologic expression of the same neoplasm. They tend to have early nodal involvement, distant metastasis, and advanced surgical stage at initial diagnosis. The overall prognosis of cervical NECs is worse than that of cervical squamous cell carcinoma or adenocarcinoma of comparable stage.

The majority (> 90%) of cervical NECs are associated with high-risk human papillomavirus (HPV), with type 18 being the most prevalent. Immunohistochemical staining for p16 is almost always positive in cervical NECs because of this HPV association.

These tumors often coexist with carcinoma in situ, invasive squamous cell carcinoma, or adenocarcinoma. It is important that clinicians do not miss the NEC component, because the prognosis of pure NEC is not significantly different from that of NEC admixed with non-NEC. The trickiest differential diagnosis of SCNEC is a small cell variant of squamous cell carcinoma. The important morphologic features favoring SCNEC are nuclear molding, finely dispersed nuclear chromatin, necrosis, crush artifact, mitosis, and numerous apoptotic bodies. Differential diagnoses of NECs, especially LCNECs, include poorly differentiated squamous carcinoma and adenocarcinoma, basaloid squamous cell carcinoma, undifferentiated carcinoma, embryonal rhabdomyosarcoma, lymphoma, melanoma, and peripheral neuroectodermal tumor.

The origin of cervical NETs is not clear. Unlike diffuse idiopathic pulmonary neuroendocrine cell hyperplasia, which is a precursor to pulmonary NETs, there is no defined precursor lesion in the normal endocervix, though isolated neuroendocrine cells are seen in normal endocervical glands. An X-chromosome clonality assay showed monoclonality of both components in a case of mixed LCNEC and mucinous carcinoma. This suggests that LCNEC might have arisen from an invasive mucinous adenocarcinoma.
Immunohistochemical staining

The diagnosis of SCNEC is based on histologic features. Neuroendocrine markers do not have to be demonstrated if morphologic findings are suitable for this aggressive tumor. The tumor displays 33% to 100% positivity for neuroendocrine markers.3,13,15,18,19 Unlike SCNEC of the cervix, a definitive diagnosis of LCNEC requires positive staining of at least one neuroendocrine marker.4,15 Chromogranin, synaptophysin, and CD56 are commonly used neuroendocrine markers. However, CD56 is considered a less specific marker of neuroendocrine differentiation compared to chromogranin and synaptophysin.11,20 This staining should be carefully interpreted, as CD56 can be present in non-NECs, such as squamous cell carcinomas and adenocarcinomas.20

Neuroendocrine differentiation is common in cervical non-NECs such as adenocarcinoma, adenosquamous carcinoma, and squamous cell carcinoma. Positive staining for chromogranin and synaptophysin has been reported in 14 (20.9%) and 5 (9%) cervical non-NEC cases, respectively.21,22 Without morphologic features of neuroendocrine differentiation, these cases should not be diagnosed as LCNEC. Controversial results have been reported regarding the clinical significance of neuroendocrine differentiation in otherwise typical carcinomas. Savargaonkar et al.21 found that chromogranin expression does not influence the clinical behavior of cervical non-NECs. On the contrary, Chavez-Blanco et al.22 reported that synaptophysin expression seems to be correlated with a poor outcome in cervical non-NECs. Thyroid transcription factor-1 (TTF-1) is commonly positive (33%–84%) in cervical NECs and might be a useful marker of these tumors, though it cannot distinguish these tumors from primary pulmonary tumors.23,24 In conjunction with neuroendocrine markers, p63 is useful in distinguishing between squamous cell carcinoma and small or large cell NECs.25 Focal or diffuse p63 positivity is seen in 43% of cervical NECs, illustrating that this marker is not specific for squamous differentiation.24,25 p53 protein is expressed in 43% of cervical NECs.26

NEUROENDOCRINE TUMORS OF THE ENDOMETRIUM

NECs of the endometrium include TC, SCNEC, and LCNEC. Only three cases of primary endometrial TCs have been reported in the English literature.27-29 One International Federation of Gynecology and Obstetrics (FIGO) stage 1 case showed vaginal recurrence approximately six and a half years after the initial presentation.29 To the best of our knowledge, endometrial AC has not been described in the English literature.

Neuroendocrine carcinomas

SCNEC and LCNEC of the endometrium are very uncommon, representing only 0.8% of endometrial cancers.30 These are highly aggressive tumors with a propensity for systemic spread and poor prognosis. The tumors usually form bulky, intraluminal masses with deep myometrial invasion.

SCNEC of the endometrium requires morphologically prototypic features of small cell carcinoma, unequivocal evidence of endometrial origin, and immunohistochemical staining of at least one neuroendocrine marker, according to the diagnostic criteria proposed by van Hoeven et al.31 However, as with other sites, a small number of SCNEC cases show distinctive histologic features of small cell carcinoma without any immunohistochemical evidence of neuroendocrine differentiation.15

Endometrial NECs are often combined with other epithelial neoplasms. Endometrioid carcinoma is the most common non-NEC component, and 50% to 80% of NEC cases are admixed with FIGO grade 1 or 2 endometrioid carcinoma. Mixed NEC and conventional endometrial carcinoma can be misinterpreted as FIGO grade 3 endometrioid carcinoma and dedifferentiated carcinoma.10,32,33 The frequent association of NEC with low-grade endometrioid carcinoma suggests that some endometrial NECs may arise from neuroendocrine cells in endometrioid carcinomas. Interestingly, scattered neuroendocrine cells are reported in the normal endometrial gland and in endometrial carcinoma.14 These tumors can also form from pluripotent stem cells of the epithelium, which have a capacity for both neuroendocrine and endometrioid glandular differentiation. Lastly, a collision tumor could arise from separate epithelial and NETs.35

NEC might be a part of the carcinoma component of carcinosarcoma.36,37 Uncommon endometrial tumors composed of papillary serous carcinoma and small cell carcinoma have been reported.35,38

Differential diagnoses of NEC

NECs of the endometrium should be differentiated from various tumors showing high-grade nuclear features with a predominantly solid growth pattern. LCNEC is much more difficult to diagnose than SCNEC, as the tumor might not show the characteristic morphologic features of neuroendocrine differentiation, such as hyperchromatic nuclei, salt and pepper chromatin, and nuclear molding. To establish a diagnosis of endometrial LCNEC, neuroendocrine patterns (nesting, trabeculae, rosettes, and palisading) should be present in at least part of the
tumor, along with expression of one or more of the neuroendocrine markers (Fig. 1).

Undifferentiated endometrial carcinoma is defined as a malignant epithelial neoplasm with no evidence of differentiation. When undifferentiated carcinoma is associated with a well to moderately differentiated endometrioid carcinoma, it should be diagnosed as a dedifferentiated carcinoma. Dedifferentiated carcinoma does not appear to confer better clinical outcomes than undifferentiated carcinoma, despite the presence of a better differentiated non-NEC component. As NEC is often accompanied by low-grade endometrioid carcinoma, it can be misinterpreted as dedifferentiated carcinoma. In addition, dedifferentiated carcinoma is frequently misdiagnosed as NEC, FIGO grade 2 or 3 endometrioid carcinoma, carcinosarcoma, high-grade endometrial stromal sarcoma, lymphoma, granulosa cell tumor, or epithelioid sarcoma.

Morphologically undifferentiated carcinoma is composed of small to intermediate-sized, dyscohesive cells growing in a patternless fashion without gland formation. Most cases have necrosis and more than 25 mitotic figures per 10 HPFs. Immunohistochemical staining for cytokeratin and epithelial membrane antigen (EMA) shows focal positivity, usually in less than 10% of tumor cells. Dedifferentiated carcinoma has different cytologic features in the undifferentiated carcinoma and endometrioid carcinoma components (Fig. 2). On the contrary, poorly differentiated endometrioid carcinoma shows similar tumor cells in the solid and glandular areas (Fig. 3). The solid area often resembles poorly differentiated non-keratinizing squamous cell carcinoma and tends to have a cohesive appearance and diffuse positivity for cytokeratin and EMA. Poorly differentiated endometrioid carcinoma should be distinguished from NEC and undifferentiated/dedifferentiated carcinoma. This distinction has important clinical implications, as endometrioid carcinoma confers a much better prognosis than NEC and undifferentiat-

Fig. 1. (A) Endometrial large cell neuroendocrine carcinoma (LCNEC) admixed with grade 1 endometrioid carcinoma. (B) Large vesicular nuclei and prominent nucleoli in LCNEC. (C) CD56 immunostaining: positive in endometrioid carcinoma and negative in LCNEC. (D) Diffuse synaptophysin expression in LCNEC.
ed/dedifferentiated carcinoma.42

Serous carcinoma with a solid growth pattern and massive necrosis should be differentiated from LCNEC, dedifferentiated carcinoma, and poorly differentiated endometrioid carcinoma. The serous component is negative for neuroendocrine markers, but diffuse expressions of p16 and p53 have been reported in both serous carcinoma and NEC.43 Along with neuroendocrine markers, it is important to find diagnostic foci of classical serous carcinoma even when the tumor is predominantly solid.38

Neuroendocrine expression in non-NECs

Non-NECs of the endometrium can express neuroendocrine markers but lack typical neuroendocrine histomorphology. Expression of neuroendocrine markers is reported in 62.5\% of FIGO grade 3 endometrioid carcinomas, which are more frequently associated with deep myometrial invasion, metastasis to distant organs, and decreased survival than tumors without neuroendocrine expression. A high-grade tumor with diffuse, strong neuroendocrine positivity should be classified as a NEC rather than a poorly differentiated endometrioid carcinoma.44

Expression of neuroendocrine markers is reported in 30\% and 41\% of undifferentiated carcinomas, and most cases exhibit focal neuroendocrine expression in less than 10\% of the cells.39,45 There is no reported difference in overall survival with or without neuroendocrine differentiation in undifferentiated carcinomas. Undifferentiated carcinoma is a highly aggressive tumor, regardless of neuroendocrine expression.39,45

NEUROENDOCRINE TUMORS OF THE OVARY

Carcinoid tumors

Ovarian carcinoid tumors are monodermal teratomas occurring in a pure form (15\%) or combined with other teratoma components (85\%), such as a dermoid cyst or a struma ovari. They can also be a component of mucinous and Brenner tumors. Carcinoid tumors of the ovary can be primary or metastatic;

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{(A) Dedifferentiated carcinoma composed of undifferentiated carcinoma and grade 1 endometrioid carcinoma. (B) Dyscohesive tumor cells growing in a patternless fashion without gland formation. Focal positivity of cytokeratin (C) and synaptophysin (D) immunostaining.}
\end{figure}
these metastases are usually from gastrointestinal tumors. Primary ovarian carcinoids are mostly confined to a unilateral ovary and behave in an indolent fashion, whereas metastatic tumors tend to be aggressive and associated with poor outcome. Therefore, the distinction between ovarian primary and metastatic carcinoids is critical. In addition to a clinical history of carcinoid tumor in an extraovarian site, such as the gastrointestinal tract or lung, metastatic carcinoids more often show bilateral distribution, multinodular growth, extraovarian tumor nodules, lymphovascular invasion, and absence of teratomatous elements. Ovarian carcinoids can be confused with other primary ovarian tumors, particularly Brenner tumors, granulosa cell tumors, and Sertoli or Sertoli-Leydig cell tumors.15,46-51

Primary carcinoid tumors of the ovary are divided into insular, trabecular, strumal, and mucinous carcinoids. Mixed forms include carcinoid tumors that contain two or more of the aforementioned categories and those that are mixed other types of primary ovarian tumors. Briefly, insular carcinoid, considered to be of midgut derivation, is the most common type of primary ovarian carcinoid tumor. It is composed of small acini and solid nests of round cells with uniform nuclei and abundant eosinophilic cytoplasm. Carcinoid syndrome occurs in about one-third of patients with insular carcinoid, despite the absence of metastasis.48

Trabecular carcinoid, considered to be of hindgut or foregut derivation, shows wavy ribbons or a trabecular arrangement of cells in a dense fibrous stroma. The tumors cells are one or two layers thick, and the nuclei are perpendicular to the axis of the ribbon or the trabeculae. Strumal carcinoid is characterized by the coexistence of carcinoid and thyroid tissue. Mucinous carcinoid, the least common type of ovarian carcinoid, resembles a goblet cell carcinoid arising in the appendix. It must be distinguished from a Krukenberg tumor and has been subdivided into well differentiated mucinous carcinoid, atypical mucinous carcinoid, carcinoma arising in mucinous carcinoid, and mixed mucinous...
carcinoid and other carcinoid types.15,46-51

Primary ovarian carcinoid tumors confined to the ovary and treated with surgery alone are expected to have an excellent overall outcome.57 Robboy et al.48 reported two recurrences in 48 cases of primary insular carcinoid of the ovary and calculated a survival rate of 95\% and 88\% at 5 and 10 years, respectively. Mucinous carcinoids might have more aggressive behavior than other types of ovarian carcinoids, particularly if associated with atypical features.56 Some ovarian AC cases have been misdiagnosed as ‘carcinoid’ or ‘strumal carcinoid’.52,53 Kurabayashi et al.55 reported a case of stage IA strumal ‘carcinoid’ tumor showing multiple bone and breast metastases 3.5 years postoperatively. Histologic features of the case were consistent with AC. The term ‘AC’ is not included in the past or current WHO classification of ovarian NETs.31,54 Division into four subcategories (insular, trabecular, strumal, and mucinous) instead of TC and AC has complicated the comparison between follow-up data from ovarian carcinoids and carcinoids from other organs. Further study is clearly necessary to better understand the clinical course of ovarian carcinoids.

Carcinoid tumors are immunoreactive to neuroendocrine markers, such as chromogranin, synaptophysin, and CD56. Chromogranin and synaptophysin are excellent discriminatory neuroendocrine markers for a carcinoid tumor. In a study of 42 carcinoid tumors, chromogranin, synaptophysin, and CD56 were expressed in 100\%, 98\%, and 57\% of samples, respectively. CD56 was also positive in 48\% of Sertoli cell tumors and in 25\% of endometrioid carcinomas. CD56 is neither highly sensitive nor specific enough for neuroendocrine lineage and is of limited value in the identification of ovarian carcinoid tumors.55 Various peptide hormones such as serotonin, gastrin, pancreatic polypeptide, glucagon, vasoactive intestinal peptide, prolactin, and somatostatin can be detected in about 25\% of cases.56 Estrogen receptors and progesterone receptors are usually negative in carcinoid tumors. CDX2, TTF-1, PAX8, and cytokeratins 7 and 20 are used for the discrimination of primary and metastatic carcinoids. As ovarian carcinoid can arise from various teratomatous elements, such as the midgut, hindgut, and respiratory epithelium, the interpretation of immunohistochemical staining should be conducted very prudently.57,58

Small cell carcinoma, pulmonary type

Two types of clinically and histologically distinct small cell carcinoma of the ovary have been described: small cell carcinoma, hypercalcemic type (SCCOHT), and small cell carcinoma, pulmonary type (SCCOPT). Clinical features favoring SCCOPT include older age and the absence of hypercalcemia. Histologically, SCCOPT shows characteristic features of SCNEC, such as finely dispersed chromatin, inconspicuous nuclei, and nuclear molding, whereas SCCOHT has clumped chromatin, prominent nuclei, and the presence of larger cells in about 50\% of cases. Follicle-like spaces are frequently seen in the hypercalcemic type, but are lacking in the pulmonary type. Ovarian surface epithelial tumors are present in more than 50\% of pulmonary type tumors, but are absent in the hypercalcemic type.59 SCCOPT is a highly aggressive SCNEC and must be distinguished from metastatic small cell carcinoma from other locations, particularly the lung. Usually, bilateral ovarian involvement is a substantial clue for a metastatic tumor, but is also seen in 45\% of SCCOPTs. As this tumor shows variable TTF-1 expression, expression of this marker cannot reliably distinguish SCCOPT from pulmonary small cell carcinoma.60 These tumors are probably of surface epithelial-stromal origin because they are frequently associated with surface epithelial tumors. In a previous study, eight of 11 SCCOPT cases were associated with surface epithelial tumors.59 Rare cases arising in an ovarian teratoma have been reported.61,62 A diagnosis of SCCOPT can be made in the absence of neuroendocrine marker positivity if the morphologic appearance is typical SCNEC. Perinuclear dot-like cytokeratin 20 staining has been reported in this tumor, as in Merkel cell carcinoma and salivary gland small cell carcinoma.59

Large cell neuroendocrine carcinoma

LCNECs of the ovary have also been reported as non-small cell NEC, undifferentiated non-small cell carcinoma, and NEC, non-small cell type.64-67 Primary ovarian LCNEC is extremely rare and has a worse prognosis than usual ovarian carcinomas, even when the diagnosis is made at an early stage. In most cases, there are concomitant ovarian surface epithelial tumors, such as mucinous borderline tumor or mucinous carcinoma, endometrioid carcinoma, serous carcinoma, unclassified high-grade carcinoma, or teratoma.64-67 The NEC component varies from 10\% to 90\% when it is combined with an epithelial tumor or teratoma. The presence of an NEC component in an otherwise usual epithelial tumor should be reported because of the potential negative prognostic impact of NEC histology. Generally speaking, a neuroendocrine component might have a prognostic impact when it reaches a certain proportion of the overall tumor. The percentage of NEC component that is necessary to confer a prognosis worse than that of the accompanying epithelial tumor is not clear.57 Primary pure LCNEC of the ovary is very rare.68,69 LCNECs probably arise from the neuroendocrine cells present...
in surface epithelial-stromal tumors or germ cell tumors. In a case of mixed LCNEC and mucinous borderline ovarian tumor, clonality analysis using the human androgen receptor gene showed monoclonality in both components, suggesting that the LCNEC might have arisen from the mucinous epithelial tumor. The common coexistence of NEC and epithelial tumors, along with the monoclonality of the two components, implies a common cellular origin of the neuroendocrine and epithelial components. A case of LCNEC associated with serous carcinoma revealed a different pattern of microsatellite instability in both components. A dual origin with concomitant transformation of epithelial cells and neuroendocrine cells might be possible in that case.

In one previous study, ovarian LCNECs were misdiagnosed as dysergminoma, sex cord tumor, or other types of carcinoma in eight of 11 cases. Attention to the histologic features of neuroendocrine differentiation and the use of immunohistochemical stains are necessary to resolve this potential underrecognition. CD56 is known to be a less specific neuroendocrine marker compared to chromogranin and synaptophysin. However, chromogranin and synaptophysin can be detected in ovarian Sertoli cells, Sertoli-Leydig cell tumors, and endometrioid tumors, which could be a potential pitfall resulting in the misdiagnosis of NETs.

LCNEC associated with serous carcinoma has rarely been reported in the ovary, as in the endometrium. Immunohistochemical evidence of neuroendocrine differentiation in ovarian serous carcinoma is more frequent than morphological evidence. Taube et al. reported synaptophysin and chromogranin expression in 6.7% and 20.7% of high-grade ovarian serous carcinomas, respectively, and found that patients with synaptophysin expression in more than 20% of tumor cells had a significantly shorter survival time than those with 0% to 20% positive cells.

Small cell carcinoma, hypercalcemic type

SCCOHT of the ovary is a highly aggressive neoplasm affecting young females and is associated with paraneoplastic hypercalcemia in two-thirds of cases. Microscopic findings show a sheet-like arrangement of cells punctuated by follicle-like spaces. The tumor cells are typically small and round with hyperchromatic nuclei and brisk mitotic activity. A large cell component with moderate to abundant eosinophilic cytoplasm is seen in about 50% of cases. Tumors composed exclusively of large cells are designated the ‘large cell variant’ of SCCOHT. The large cells can have a rhabdoid appearance. Differential diagnoses include juvenile and adult granulosa cell tumors, high-grade serous carcinoma, desmoplastic small round cell tumor, dysergminoma, Ewing sarcoma, primitive neuroectodermal tumor, neuroblastoma, round cell sarcoma, high-grade endometrial stromal sarcoma, undifferentiated carcinoma, lymphoma, melanoma, and SCNEC.

Ovarian SCCOHT is often misunderstood or confused with a subtype of NEC due to the usage of the term ‘small cell carcinoma’. This tumor is included in a miscellaneous category in the 2014 WHO classification of female reproductive organs. Recently, somatic and germline SMARCA4 mutations accompanied by the loss of BRG1 protein expression in immunohistochemistry have been described in SCCOHTs. To date, the diagnosis of SCCOHT has been made on the basis of microscopic findings without any specific immunohistochemical markers. The loss of BRG1 protein expression is confirmed to be a useful marker for diagnosing SCCOHT, although the interpretation should be conducted carefully due to the possible heterogeneity and variable intensity of this immunostaining. BRG1 and INI-1 are members of the SWI/SNF complex and are involved in chromatin remodeling. The alternative expression of INI-1 and BRG1 is regarded as a molecular hallmark of malignant rhabdoid tumor. The histological resemblance between SCCOHT and malignant rhabdoid tumor became a trigger to evaluate INI-1 and BRG1 immunostaining in SCCOHT. In addition to the lack of BRG1 immunoreactivity, SCCOHT cases also showed retained INI-1 expression. Currently, SCCOHT is considered to be an ovarian malignant rhabdoid tumor.

CONCLUSION

The four-category scheme including TC, AC, LCNEC, and SCNEC is still applied to NETs of the female reproductive tract. Ki-67 labeling index is not included in the diagnostic criteria of the 2014 WHO classification of cervical NETs.

The prevalence and biologic behavior of NETs vary along the female reproductive tract. Carcinoid tumors are extremely rare in the cervix and the endometrium, and their clinical behavior is uncertain due to the scarcity of follow-up data. However, in the ovary, carcinoid tumors are the most common NET. Division into four subcategories (insular, trabecular, strumal, and mucinous) instead of TC and AC has obscured the comparison of follow-up data from ovarian carcinoids with that of carcinoids in other organs.

Both small cell and large cell NECs show highly aggressive clinical behavior, regardless of the site of origin. The uterine cervix is the most common site for NECs, especially SCNECs in
the female reproductive tract. Since endometrial NEC is often accompanied by low-grade endometrioid carcinoma, it can be misdiagnosed as FIGO grade 3 endometrioid carcinoma or dedifferentiated carcinoma.30,33 As NECs are rare and tumors with neuroendocrine differentiation are infrequently found in the endometrium or ovary, various tumors are included in the differential diagnoses. Attention to the histologic features of neuroendocrine differentiation and the immunohistochemical staining of neuroendocrine markers is necessary to reach a correct diagnosis. CD56 is known to be a less specific neuroendocrine marker compared to chromogranin and synaptophysin.11,20,35 The common coexistence of NEC and epithelial tumors along with the monoclonality of the two components implies a common cellular origin of the neuroendocrine and epithelial components.17,72

Ovarian SSCOPT7 is a highly aggressive SCNEC and must be distinguished from metastatic small cell carcinoma from other locations. Currently, SSCOHT is considered to be an ovarian malignant rhabdoid tumor, as inactivation of SMARCA4 accompanied by the loss of BRG1 protein and the retention of INI-1 in immunohistochemistry has been described in this aggressive tumor.78,82,83

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The author is very grateful to Professor Je G. Chi, who passed away last winter. He was a great mentor and friend of mine. This work is dedicated to his memory.

REFERENCES

17. Yasuoka H, Tsujimoto M, Ueda M, \textit{et al}. Monoclonality of large-cell neuroendocrine carcinoma and invasive intestinal-

46. Reed NS, Gomez-Garcia E, Gallardo-Rincon D, et al. Gynecologic

58. Desouki MM, Lloyd J, Xu H, Cao D, Barner R, Zhao C. CDX2 may be a useful marker to distinguish primary ovarian carcinoid from gastrointestinal metastatic carcinoids to the ovary. Hum Pathol 2013; 44: 2536-41.

Acute Atherosis of the Uterine Spiral Arteries: Clinicopathologic Implications

Joo-Yeon Kim1 · Yeon Mee Kim1,2

1Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; 2Department of Molecular Medicine, Kungpoek National University School of Medicine, Daegu, Korea

Acute atherosis is unique vascular changes of the placenta associated with poor placentation. It is characterized by subendothelial lipid-filled foam cells, fibrinoid necrosis of the arterial wall, perivascular lymphocytic infiltration, and it is histologically similar to early-stage atherosclerosis. Acute atherosis is rare in normal pregnancies, but is frequently observed in non-transformed spiral arteries in abnormal pregnancies, such as preeclampsia, small for gestational age (SGA), fetal death, spontaneous preterm labor and preterm premature rupture of membranes. In preeclampsia, spiral arteries fail to develop physiologic transformation and retain thick walls and a narrow lumen. Failure of physiologic transformation of spiral arteries is believed to be the main cause of uteroplacental ischemia, which can lead to the production of anti-angiogenic factors and induce endothelial dysfunction and eventually predispose the pregnancy to preeclampsia. Acute atherosis is more frequently observed in the spiral arteries of the decidua of the placenta (parietalis or basalis) than in the decidual or myometrial segments of the placental bed. The presence and deeper location of acute atherosis is associated with poorer pregnancy outcomes, more severe disease, earlier onset of preeclampsia, and a greater frequency of SGA neonates in patients with preeclampsia. Moreover, the idea that the presence of acute atherosis in the placenta may increase the risk of future cardiovascular disease in women with a history of preeclampsia is of growing concern. Therefore, placental examination is crucial for retrospective investigation of pregnancy complications and outcomes, and accurate placental pathology based on universal diagnostic criteria in patients with abnormal pregnancies is essential for clinicopathologic correlation.

Key Words: Acute atherosis; Spiral artery; Physiologic transformation; Preeclampsia; Atherosclerosis; Lipid; Cholesterol

Acute atherosis was first described in 1945 by Hertig1 and was named by Zeek and Assali.2 Acute atherosis is unique vascular changes observed in non-transformed spiral arteries of the placenta. The histologic findings of acute atherosis, including fibrinoid necrosis, inflammatory cell infiltration of the vessel walls and collection of subendothelial lipid-laden macrophages,1–49 are similar to those of early-stage atherosclerosis of the coronary and other larger arteries, as well as allograft rejection.27,50 Acute atherosis is rare in normal pregnancy,24–26,31,42 but is frequently observed in abnormal pregnancies, such as preeclampsia, small for gestational age (SGA), fetal death, spontaneous preterm labor and preterm premature rupture of membranes (PROM).2–4,5–7,13,15–19,21,25,24,26–31,40–42,44–48,51 The etiology and pathogenesis of preeclampsia is complicated and remains unclear, despite its role as one of the leading causes of maternal and neonatal morbidity and mortality in pregnancy. Failure of physiologic remodeling of the spiral arteries is a main cause of preeclampsia, and these arteries are prone to develop acute atherosis.52 Moreover, accumulating evidence suggests that women with a history of preeclampsia exhibit a high prevalence of major cardiovascular risk factors.53–57 This gives rise to the question of whether acute atherosis in the placenta is related to possible future cardiovascular disease in the mother.

This review describes (1) spiral artery changes in normal and abnormal placentation during pregnancy, (2) histologic findings of acute atherosis, (3) acute atherosis frequency in normal and abnormal pregnancies, (4) placental lesions associated with acute atherosis, (5) possible pathogenic mechanisms of acute atherosis, and (6) clinical implications of acute atherosis.

POOR PLACENTATION AND ACUTE ATHEROSIS

Normal physiologic transformation of the uterine spiral arter-
ies during early pregnancy is considered a foundation of successful pregnancy. The spiral arteries are normally transformed into large dilated vessels, with dramatic structural changes to the vessel wall. The key findings of normal transformation of the spiral arteries are (1) dilation of the lumen, (2) trophoblast invasion into the vessel wall, and (3) replacement of the muscular and elastic tissue of the arterial wall by a thick fibrinoid material (Fig. 1A). These changes maximize the delivery of maternal blood to the intervillous space of the placenta, so that a sufficient blood supply through transformed spiral arteries enables the transfer of enough nutrition and oxygen from the mother to the fetus. Maternal blood from dilated spiral arteries meets fetal blood in the intervillous space, while the intervillous space drains blood back to the utero-placental veins. For successful placentation, trophoblast invasion from the maternal-fetal interface to the myometrium through the decidua during the first 3 months of pregnancy is critical.

Poor placentation is defined as the failure of physiologic transformation of spiral arteries and appears to arise from an inadequate or shallow trophoblast invasion. Poor placentation is also a leading cause of preeclampsia and other abnormal pregnancies, such as spontaneous abortion, SGA, preterm labor and preterm PROM. In preeclampsia, spiral arteries of the myometrial segment of the uterus fail to achieve physiologic transformation and retain thick walls and a narrow lumen; this is believed to be the main cause of uteroplacental ischemia (Fig. 1B). Uteroplacental ischemia can lead to the production of anti-angiogenic factors, such as soluble fms-like tyrosine kinase 1 and endoglin, which can induce endothelial dysfunction and eventually predispose the pregnancy to preeclampsia. Spiral arteries that fail to achieve physiologic transformation are prone to develop acute atherosis.

HISTOLOGIC CHARACTERISTICS AND TOPOGRAPHIC DISTRIBUTION OF ACUTE ATHEROSIS

Histologic findings of acute atherosis consist of the presence of fibrinoid necrosis of the artery wall, a subendothelial collection of lipid-laden macrophages, and vascular or perivascular lymphocytic infiltration in non-transformed uterine spiral arteries (Fig. 2A). Lipids in the spiral arteries with acute atherosis are stained red with oil-red O (Fig. 2B).

Acute atherosis was more frequently observed in the spiral arteries of the decidua (parietalis or basalis) of the placenta than in the decidual or myometrial segments of the placental bed. The depth of acute atherosis is associated with the severity of preeclampsia. Briefly, the presence of atherosis in the myometrial segment is associated with a severe form and an earlier onset of preeclampsia than those without this lesion in the myometrial segment.

FREQUENCY OF ACUTE ATHEROSIS

Acute atherosis used to be considered a characteristic finding of spiral arteries of patients with preeclampsia and has been reported to occur in 5% to 40% of patients with preeclampsia. The variable frequency of acute atherosis may be explained by the following reasons: (1) variation in the number of tissue sections taken (size of sample), (2)
location of tissue sections, (3) variation in tissue staining methods (hematoxylin and eosin [H&E] staining only or additional immunohistochemical staining) for the diagnosis of acute atherosclerosis, and (4) differences in the pathologist’s diagnostic skill. In a previous study with over 14,000 placenta samples using only H&E staining for the diagnosis of acute atherosis and taking an average of two sections from each placenta based on routine histology laboratory tasks, the prevalence of acute atherosis in uncomplicated pregnancies was 0.4% and the frequency of acute atherosis varied based on the specific obstetrical syndrome: preeclampsia, 10%; fetal death, 9%; mid-trimester spontaneous abortion, 2.5%; SGA neonates without preeclampsia, 1.7%; and spontaneous preterm labor, 1.2%. Acute atherosis is associated with more severe disease, earlier onset of preeclampsia, and a greater frequency of SGA neonates in patients with preeclampsia.51,80

PLACENTAL LESIONS ASSOCIATED WITH ACUTE ATHEROSIS

A previous study found that acute atherosis is associated with an increased risk of placental lesions consistent with maternal underperfusion, fetal vascular thrombo-occlusive disease and chronic chorioamnionitis, but not with other chronic inflammatory lesions.81

The correlation between acute atherosis and chronic chorioamnionitis indicates the presence of circulating maternal T cells and adaptive immune response may also play a role in the genesis of acute atherosis.73,77,78,91-93

In chronic chorioamnionitis, maternal T cells infiltrating the chorion laeve cause trophoblast apoptosis, which resembles allograft rejection.92 Chronic chorioamnionitis is also associated with anti-fetal HLA maternal sensitization51 and complement deposition in the umbilical vein endothelium,94 which has been associated with a novel form of fetal systemic inflammatory response characterized by the over-expression of T-cell chemokines such as CXCL10.95

Higher concentrations of CXCL9, CXCL10, and CXCL11 have been found in mothers with chronic placental inflammation compared to those without.92 Similarly, T lymphocytes have been detected in the early stages of atheroma formation.96 Moreover, differential expression of three interferon (IFN) gamma-inducible CXC chemokines, IFN-inducible protein 10 (CXCL10 or IP-10), monokine induced by IFN-y (CXCL9 or Mig) and IFN-inducible T-cell α chemotactrant (CXCL11 or I-TAC) were found in atherosclerosis.96

PATHOGENESIS OF ACUTE ATHEROSIS

Multiple factors including excessive decidual inflammation,42,47,48,97 immune dysregulation at the maternal-fetal interface27 and immunological mismatch between the mother and fetus27 have been proposed as causes or initiators of acute atherosis.

Recently, Staff et al.48 suggested four serial mechanisms for the development of acute atherosclerosis, with excessive decidual inflammation as the final common pathway: (1) shear flow stress caused by abnormal blood flow in inadequately remodeled spiral arteries, (2) decidual inflammation, including maternal allo-reactivity to feto-paternal HLA-C or minor histocompatibility antigens, (3) background (systemic) maternal inflammatory stress secondary to the changes induced by pregnancy and preeclampsia, and (4) maternal genetic predisposition (for example, polymorphism in regulator of G protein signaling 2).

Elevation of signs of intravascular inflammation have been reported in both normal98-101 and abnormal pregnancies, such as
spontaneous preterm labor with intact membranes, preterm PROM, preeclampsia, SGA, and pyelonephritis. Since chronic vascular inflammation is one of the main causes of atherosclerosis and acute atherosclerosis, the possibility of activation of cholesterol crystal-induced inflammation in macrophages should be investigated as an important link between cholesterol metabolism and acute atherosclerosis.

THE CLINICAL IMPLICATIONS OF ACUTE ATHEROSIS

Maternal serum lipid level of patients with acute atherosclerosis in the placenta

In atherosclerosis, medium-sized and large arteries fueled by lipids, as well as the deposition of excess cholesterol in the blood stream, initiate atherosclerosis. Similarly, acute atherosclerosis in non-transported uterine spiral arteries also show variable amounts of lipid deposition in the wall of spiral arteries, and it is stained red with oil-red O staining (Fig. 2B). Moreover, serum triglycerides are about 50% higher in preeclamptic women than in normal pregnant women. However, there are no differences in other lipid profiles, including total cholesterol and high-density lipoprotein. Whether there are differences in low-density lipoprotein remains controversial.

Acute atherosclerosis and future cardiovascular risk

Accumulating evidence suggests that women with a history of preeclampsia show a high prevalence of major cardiovascular risk factors. Similarities between preeclampsia and atherosclerosis, as well as between acute atherosclerosis of the spiral arteries and coronary atherosclerosis, have been observed. Intravascular inflammation, changes in lipid metabolism and macrophage infiltration of the intima and media are seen in both acute atherosclerosis and atherosclerosis. Therefore, hyperlipidemia and abnormal lipid metabolism combined with intravascular inflammation can affect endothelial cell function and may lead to atherosclerosis in non-pregnant women who have a past history of preeclampsia. We recommend that women who have a past history of preeclampsia be considered at high risk for cardiovascular disease and recommend implementation of regular screenings and prevention programs.

CONCLUSION

The presence and deeper location of acute atherosclerosis is associated with worse pregnancy outcomes, more severe disease, earlier onset, and a greater frequency of SGA neonates in patients with preeclampsia. Moreover, the idea that acute atherosclerosis in the placenta may increase the risk of future cardiovascular disease in women with a history of preeclampsia is of growing concern. Therefore, placental examination is crucial for investigation of pregnancy complications and outcomes, and accurate placental pathology based on universal diagnostic criteria in patients with abnormal pregnancies is essential for clinicopathologic correlation.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The authors are very grateful to Professor Je G. Chi, who passed away during the winter of 2014. He was a great mentor and friend to all of us. This work is dedicated to his memory.

REFERENCES

10. Emmrich P, Birke R, Gödel E. Morphology of myometrial and de-

69. Maynard SE, Min JY, Merchán J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunc-
82. Libby P. Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 2006; 98: 3Q-9Q.

Acute Atherosis of the Uterine Spiral Arteries: Clinicopathologic Implications

Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats

Jae Chul Lee, Choong Ik Cha, Dong-Sik Kim, Soo Young Choe

Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Department of Surgery, Brain Korea 21 PLUS Project for Medical Sciences and HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul; Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea

Received: September 4, 2015
Accepted: September 9, 2015

Corresponding Authors
Soo Young Choe, PhD
Department of Biology, School of Life Sciences, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea
Tel: +82-43-261-2297
Fax: +82-43-275-2291
E-mail: leejc@chungbuk.ac.kr

Dong-Sik Kim, MD, PhD
Department of Surgery, Brain Korea 21 PLUS Project for Medical Sciences and HBP Surgery and Liver Transplantation, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Tel: +82-2-2286-1421
Fax: +82-2-2286-1428
E-mail: beas100@korea.ac.kr

Background: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may have multiple therapeutic applications for cell based therapy including the treatment of pulmonary artery hypertension (PAH). As low survival rates and potential tumorigenicity of implanted cells could undermine the mesenchymal stem cell (MSC) cell-based therapy, we chose to investigate the use of conditioned medium (CM) from a culture of MSCs as a feasible alternative.

Methods: CM was prepared by culturing hUCB-MSCs in three-dimensional spheroids. In a rat model of PAH induced by monocrotaline, we infused CM or the control unconditioned culture media via the tail-vein of 6-week-old Sprague-Dawley rats. Results: Compared with the control unconditioned media, CM infusion reduced the ventricular pressure, the right ventricle/(left ventricle+interventricular septum) ratio, and maintained respiratory function in the treated animals. Also, the number of interleukin 1α (IL-1α), chemokine (C-C motif) ligand 5 (CCL5), and tissue inhibitor of metalloproteinase 1 (TIMP-1)–positive cells increased in lung samples and the number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL)–positive cells decreased significantly in the CM treated animals. Conclusions: From our in vivo data in the rat model, the observed decreases in the TUNEL staining suggest a potential therapeutic benefit of the CM in ameliorating PAH-mediated lung tissue damage. Increased IL-1α, CCL5, and TIMP-1 levels may play important roles in this regard.

Key Words: Apoptosis; Culture media, conditioned; Gene expression; Mesenchymal stromal cells; Pulmonary artery hypertension

Pulmonary artery hypertension (PAH) is a progressive chronic disease with a high mortality rate. PAH has a complex disease mechanism, but its cardinal signs are an elevation of pulmonary artery pressure, right ventricular (RV) hypertrophy, and arteriolar wall remodeling. Increased pulmonary vascular resistance and over-proliferation of pulmonary artery endothelial cells leads to remodeling of the pulmonary vasculature. There is also damage to the pulmonary microvasculature impacting the blood flow from the heart to the lungs. Although current treatments may prolong and improve quality of life for the patients, the long-term prognosis for PAH is poor with a 2- to 3-year survival at the time of diagnosis.

Autologous implantation of bone marrow mononuclear cells, known to be enriched in mesenchymal stem cells (MSCs), has demonstrated safety and effectiveness in therapeutic angiogenesis. A number of studies have also indicated a therapeutic benefit from bone marrow derived MSCs in increasing respiratory function in animal models of PAH. In separate studies, human umbilical cord blood-derived MSCs (hUCB-MSCs) have also improved lung function in animal models of PAH and in a number of human PAH patients.

In previous studies, we demonstrated the neuroprotective potential of various conditioned media (CM), namely human adipose tissue-derived stem cell (hADSC)–conditioned media and

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 2383-7837
eISSN 2383-7845
human neural stem cell (hNSC)–conditioned media to treat rats with stroke and Huntington’s disease.14,15 We also investigated gene expression changes by microarray analysis after injection of hUCB-MSCs into rats in an experimental model of PAH.16 Based on our findings from that study, we undertook an investigation to assess the feasibility and safety of conditioned medium from hUCB-MSCs (hUCB-MSC-CM) in the same rat PAH model. We also tested the hypothesis that the conditioned media from these cells may lead to improved lung function in the affected rats. Here, we elaborate on our results and demonstrate that the conditioned media provides a therapeutic benefit in the rat model of PAH. As there are certain advantages in using conditioned media in lieu of autologous whole bone marrow or umbilical cord cells as sources for MSCs, our data may be provide a means of increasing the accessibility of MSCs to treat various diseases including PAH.

MATERIALS AND METHODS

Animals

Six-week-old male Sprague-Dawley rats were used. All rats were housed in climate-controlled conditions with a 12-hour light/12-hour dark cycle, and had free access to food and water. All animal experiments were approved by the appropriate Institutional Review Boards of the Seoul National University College of Medicine (Seoul, Korea; SNU-101122-2) and conducted in accordance with National Institutes of Health Guide for the Care Use of Laboratory Animals (NIH publication No. 86-23, revised in 1996).

Pulmonary arterial hypertension rat model

PAH was induced by subcutaneous injection of 50 mg/kg monocrotaline (MCT; Sigma-Aldrich, St. Louis, MO, USA) dissolved in 0.5 N HCl. The rats were grouped into a control group (C group) (n = 20), injection of α-minimal essential medium (αMEM) followed by MCT group (M group) (n = 20), and injection of MCT followed by hUCB-MSC-CM transfusion group (CM group) (n = 20). αMEM and hUCB-MSC-CM (0.5 μL/hr) were transfused by tail-vein 7 days after MCT injection. The animals were sacrificed at 7, 14, 21, and 28 days after hUCB-MSC-CM transfusion. Tissues were removed and immediately frozen at −70°C for enzyme analysis.

Cell preparation and culture of hUCB-MSCs

hUCB-MSCs were obtained from the Biomedical Research Institute (Seoul, Korea). Isolated human MSCs were expanded in culture as previously described.6 hUCB-MSCs were maintained in αMEM (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Gibco), 100 U/mL penicillin (Gibco), and 100 g/mL streptomycin (Gibco). Passages up to 5 were used for experiments.

Preparation of hUCB-MSC-CM

To generate hUCB-MSC-CM spheroids,16,17 30 μL of cell suspension (1 × 10^7 cells/mL) were applied to the lid of a Petri dish containing phosphate buffered saline (PBS). After 24 hours of incubation, spheroids formed in the drops were retrieved. For the three-dimensional bioreactor culture, hUCB-MSC spheroids (4.2 × 10^7 cells) were cultured in a siliconized spinner flask (Bellco, Vineland, NJ, USA) containing 70 mL αMEM with stirring at 70 rpm. To obtain CM, the medium was changed to αMEM without serum, and the cells were cultured for 2 days. CM was collected by centrifugation.14

Determination of the organ weights and right hypertrophy index

The rats were weighed and observed for general appearance during the study period. The animals were sacrificed at the scheduled time. The wet weights of the excised right ventricle (RV), left ventricle (LV), and interventricular septum (IVS) were measured. The weights of the LV and IVS were added (LV + IVS) to determine the RV to LV + IVS ratio [RV/(LV + IVS)], which was used to determine the right hypertrophy index.

Pulmonary hemodynamics

Rats were anaesthetized by intraperitoneal injection of urethane and secured on a surgical stage. An 8-mm-long right internal jugular vein was isolated and ligated at the distal end. The vessel was cut at the proximal end of ligation. A catheter filled with heparinized saline was rapidly inserted along the incision and slowly advanced for about 5 cm to enter the pulmonary artery. The standard of pulmonary hypertension was defined as a systolic pulmonary pressure (SPAP) larger than 50 mm Hg.18 Hemodynamic parameters were recorded at baseline and at 7, 14, 21, and 28 days.

Immunohistochemistry

Excised lung tissues were incubated overnight in 10% buffered formalin. Four-micrometer-thick sections were cut from paraffin embedded tissue blocks, deparaffinized in xylene, and rehydrated in graded alcohol solutions (70%–100%). Heat antigen retrieval was achieved by boiling the tissue sections in an-
tigen retrieval solution in pH 6.0 or pH 9.0 (Dako, Carpinteria, CA, USA) for 10 minutes in a microwave prior to incubation at 4°C overnight with primary antibodies against interleukin 1α (IL-1α), chemokine (C-C motif) ligand 5 (CCL5), and tissue inhibitor of metalloproteinase 1 (TIMP-1; Abcam, Cambridge, MA, USA). After incubation with the appropriate biotinylated secondary antibodies for 30 minutes at 4°C and subsequently with streptavidin (Dako, Kyoto, Japan), color development was done using diaminobenzidine (DAB) as a chromogen and counterstained with hematoxylin.

Western blot analysis

The tissue was homogenized in 10 mM Tris HCl buffer, pH 7.4 containing 0.5 mM ethylenediaminetetraacetic acid, pH 8.0, 0.25 M sucrose, 1 mM phenylmethylsulfonyl fluoride, 1 mM NaVO₃, and a protease inhibitor cocktail (Roche-Boehringer-Mannheim, Mannheim, Germany). After centrifugation, the supernatant was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Samples equivalent to 25 μg of protein content were loaded and size-separated by 8%–12% SDS-PAGE. The proteins on the acrylamide gel were transferred to a polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA) at 400 mA in a transfer buffer containing 25 mM Tris and 192 mM glycine, pH 8.4. The nitrocellulose membrane was blocked in tris-buffered saline with 5% non-fat dry milk at room temperature for 1 hour in 0.1% Tween 20 and incubated with the appropriate primary antibodies, including anti–IL-1α (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti–CCL5 (Fitzgerald Industries International, Concord, MA, USA), anti–TIMP-1 (Abcam), and anti-caspase-3, anti-Bcl-2, anti-actin (Santa Cruz Biotechnology) at 4°C for overnight. The membranes were then incubated with horseradish peroxidase-conjugated secondary antibody (Cell Signaling Technology, Danvers, MA, USA) for 1 hour at room temperature. After washing, the membranes were visualized by a chemiluminescent ECL-detection kit from GE-Healthcare (Piscataway, NJ, USA).

Cytokine array and gene expression in lung tissues

The lung samples were collected at termination (4 days after hUCB-MSC-CM injection) and quickly frozen in liquid nitrogen. A rat cytokine array (ARY008, R&D Systems, Minneapolis, MN, USA) was used to screen the lung homogenates according to the manufacturer’s instructions. The samples were pooled per treatment group and equal amounts of protein were loaded on the blots.

In situ terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique assay for lung cell apoptosis

Apoptotic cells in the tissue sections were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL) using a commercial apoptosis kit (TACS TM TdT Kit, R&D Systems), according to the supplier’s instructions. In brief, the lung tissue sections were de-paraffinized with xylene and ethanol and rinsed with PBS. The sections were then treated with proteinase K in PBS followed by quenching of endogenous peroxidase. A biotinylated dNTP mix was added to the 3’-OH ends of DNA by terminal deoxynucleotidyl transferase (TdT). After incubating with streptavidin-horseradish peroxidase, the sections were stained with DAB and counterstained with methyl green. Finally, the sections were dehydrated in ethanol, cleared with xylene, and mounted with coverslips in a permanent medium. According to the supplier’s instructions, experimental controls included for the assay were TACS-nuclease–treated thyroid tissue sections as the positive control and the omission of the TdT reaction step as the negative control.

Statistical analyses

Results were expressed as the mean ± standard deviation. An unpaired two-tailed t test and Mann-Whitney test were used, and a p-value less than .05 was considered statistically significant. SPSS ver. 14.0 for Windows (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.

RESULTS

Changes in body and organ weights and systolic pulmonary artery pressure after injection with hUCB-MSC-CM in PAH rats

hUCB-MSC-CM has the potential to increase cell differentiation and induce immune modulation in various disease models. However, the role of hUCB-MSC-CM in PAH has not been well elucidated. To address this, in our rat model of PAH, following MCT treatment, we treated rats with hUCB-MSC-CM and sham treated for the control group. There was a significant decrease in body weight at 14, 21, and 28 days in the MCT group (M group) compared to the control group (C group). However, body weight increased at 21 and 28 days in the conditioned media treated group (CM group) compared to the M group. The M group also showed increased weights of the RV at 21 and 28 days. The sum weight of LV + IVS was not signifi-
Therapeutic Effects of hUCB-MSC-CM on PAH

Table 1. Changes of body and organ weights after hUCB-MSCs-CM injection in PAH rats

<table>
<thead>
<tr>
<th>Day</th>
<th>Group</th>
<th>Body weight (g)</th>
<th>RV (g)</th>
<th>LV+IVS (g)</th>
<th>RV/(LV+IVS) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Control</td>
<td>318.63 ± 14.78</td>
<td>0.132 ± 0.02</td>
<td>0.611 ± 0.02</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>278.50 ± 32.71</td>
<td>0.155 ± 0.03</td>
<td>0.543 ± 0.03</td>
<td>0.28 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td>280.46 ± 29.82</td>
<td>0.164 ± 0.02</td>
<td>0.561 ± 0.03</td>
<td>0.29 ± 0.02</td>
</tr>
<tr>
<td>14</td>
<td>Control</td>
<td>343.66 ± 24.52</td>
<td>0.156 ± 0.02</td>
<td>0.731 ± 0.03</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>256.71 ± 45.57*</td>
<td>0.234 ± 0.03</td>
<td>0.671 ± 0.02</td>
<td>0.34 ± 0.03*</td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td>271.21 ± 38.82</td>
<td>0.224 ± 0.04</td>
<td>0.699 ± 0.03</td>
<td>0.32 ± 0.02</td>
</tr>
<tr>
<td>21</td>
<td>Control</td>
<td>303.81 ± 24.62</td>
<td>0.166 ± 0.03</td>
<td>0.782 ± 0.03</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>249.67 ± 47.29*</td>
<td>0.314 ± 0.06*</td>
<td>0.677 ± 0.05</td>
<td>0.46 ± 0.06*</td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td>271.00 ± 51.56*</td>
<td>0.284 ± 0.05</td>
<td>0.631 ± 0.03</td>
<td>0.45 ± 0.03</td>
</tr>
<tr>
<td>28</td>
<td>Control</td>
<td>394.00 ± 41.61</td>
<td>0.171 ± 0.02</td>
<td>0.801 ± 0.03</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>229.71 ± 44.82*</td>
<td>0.394 ± 0.08*</td>
<td>0.751 ± 0.06</td>
<td>0.52 ± 0.07*</td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td>319.29 ± 36.62*</td>
<td>0.261 ± 0.06*</td>
<td>0.732 ± 0.04</td>
<td>0.35 ± 0.04*</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

Table 2. Change of systolic pulmonary artery pressure after hUCB-MSCs-CM injection in PAH rats

<table>
<thead>
<tr>
<th>Day</th>
<th>C group</th>
<th>M group</th>
<th>CM group</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>22.7 ± 0.6</td>
<td>24.5 ± 2.1</td>
<td>23.2 ± 3.4</td>
</tr>
<tr>
<td>14</td>
<td>22.0 ± 1.1</td>
<td>37.8 ± 3.2*</td>
<td>30.9 ± 4.6</td>
</tr>
<tr>
<td>21</td>
<td>23.3 ± 0.9</td>
<td>50.2 ± 4.7*</td>
<td>39.2 ± 5.2*</td>
</tr>
<tr>
<td>28</td>
<td>22.9 ± 2.1</td>
<td>58.0 ± 6.4*</td>
<td>37.8 ± 4.1*</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

Cytokine profile in the lung tissues after hUCB-MSC-CM treatment

A profile of the cytokines in the lung homogenates was made to investigate potential changes from hUCB-MSC-CM treatment (Fig. 1). Ten pro-inflammatory cytokines that included cytokine-induced neutrophil chemoattractant-1 (CINC-1), cytokine-induced neutrophil chemoattractant-2a/b (CINC-2a/b), chemokine (C-X-C motif) ligand 1 (CX3CL1), lipopolysaccharide-induced CXC chemokine (LIX), leukocyte endothelial cell adhesion molecule 1 (LECAM-1), chemokine (C-X-C motif) ligand 7, TIMP-1, vascular endothelial growth factor (VEGF), IL-1α, and CCL5 were examined in the C, M, and CM groups. CINC-1, CINC-2a/b, CX3CL1, LIX, LECAM-1, TIMP-1, and VEGF were lower in the M and CM groups, whereas TIMP-1, IL-1α, and CCL5 were higher in the CM group compared to the C and M groups. CCL7 was higher in the M group, whereas CCL7 was significantly different between the C, M, and CM groups at the time point tested. The ratio of RV to LV + IVS, namely RV/LV + IVS, was significantly higher at 14, 21, and 28 days in the M group compared with the C group. However, the RV/LV + IVS ratio was significantly decreased at 28 days in the CM group compared with the M group. Also, LV + IVS was significantly lower in both M and CM groups compared to the C group at 14, 21, and 28 days. The lung weight was significantly increased in the M group compared with the C group at 21 and 28 days. However, the lung weight was significantly decreased in the CM group compared to the M group at 28 days (Table 1). The mean SPAP was also significantly increased in the M group compared to the C and CM groups at 14, 21, and 28 days (Table 2).

Immunohistochemistry analysis of lung samples

Immunohistochemistry (IHC) staining of the lung tissue revealed that TIMP-1, IL-1α, and CCL5-positive cells were more prevalent in the CM group, and then followed by the M group in comparison with the C group at 28 days (Fig. 2A–R). These results confirmed that hUCB-MSC-CM increased the expression of certain immunomodulating cytokines (at the protein level) in the lungs of treated animals. Three weeks after hUCB-MSC-CM transfusion, TIMP-1-, IL-1α-, and CCL5-positive cells were still observed at the transplanted lung area in the CM group. The increased levels of TIMP-1, IL-1α, and CCL5 immunoreactivity observed in the M group were statistically significant (p < .05). The increased levels of CCL5 immunoreactivity were also significant in the CM group compared with the M group (Fig. 2S).

Western blot analysis

The protein expressions of CCL5 at 28 days were significant-
ly increased in the M group compared to the C group. The protein expressions of TIMP-1, IL-1α, and CCL5 at 28 days were significantly increased in the CM group compared to the M group (Fig. 3). The protein expressions of caspase-3 and Bcl-2 were significantly increased in the M group compared to the C group at 28 days. The protein expressions of caspase-3 and Bcl-2 were significantly decreased in the CM group compared to the M group at 28 days (Fig. 4).

TUNEL apoptosis assay

The TUNEL staining was performed to detect apoptotic DNA in the lung tissue. The assayed C group did not have any positive

Fig. 1. Inflammatory cytokine expressions in the three groups. (A) To screen whether hUCB-MSCs-CM affect local production of inflammatory cytokines by lung cells in the three groups, a cytokine array is performed on lung homogenates. (B) TIMP-1, IL-1α, and CCL5 are higher in the CM group compared to the C and M groups, whereas CCL7 and VEGF are lower in the CM group compared to the M group. CINC-1, CINC-2a/b, CX3CL1 LIX, and LECAM-1 are higher in the C group compared to the M and CM groups. C group, control group (n = 7); M group, monocrotaline group (n = 7); CM group, hUCB-MSCs-CM group (n = 7). hUCB-MSCs-CM, conditioned medium from human umbilical-cord blood derived mesenchymal cells; CINC-1, cytokine-induced neutrophil chemoattractant-1; CINC-2a/b, cytokine-induced neutrophil chemoattractant-2a/b; CX3CL1, chemokine (C-X-C motif) ligand 1; LIX, lipopolysaccharide-induced CXC chemokine; LECAM-1, leucocyte endothelial cell adhesion molecule 1; CCL7, chemokine (C-C motif) ligand 7; TIMP-1, tissue inhibitor of metalloproteinase 1; VEGF, vascular endothelial growth factor; IL-1α, interleukin 1α. a p < .05 compared with the C group; b, c p < .05 compared with the M group.

Fig. 2. Localization of IL-1α, CCL5, and TIMP-1-immunoreactive cells in the lung tissues at 28 days. (A–R) Immunohistochemical expression reveals that the positive cells of IL-1α, CCL5, and TIMP-1 are significantly higher in the CM group than that in the C and M groups, and they are higher in the M group than that in the C group. (S) The increased levels of IL-1α, CCL5, and TIMP-1 immunoreactivity observed in the CM group are statistically significant. The levels of IL-1α, CCL5, and TIMP-1 immunoreactivity are significantly decreased in the CM group compared with the C and M groups. Panels A–C, G–I, and M–O are high power views of panels D–F, J–L, and P–R, respectively. C, control; M, monocrotaline; CM, hUCB-MSCs-CM; hUCB-MSCs-CM, conditioned medium from human umbilical-cord blood derived mesenchymal cells; TIMP-1, tissue inhibitor of metalloproteinase 1; IL-1α, interleukin 1α; CCL5, chemokine (C-C motif) ligand 5. a p < .05 compared with the C group; b p < .05 compared with the M group.
Therapeutic Effects of hUCB-MSC-CM on PAH

staining (Fig. 5A, D). However, the M group had lung tissues with a positive TUNEL staining as seen by the presence of dark brown nuclei (Fig. 5B, E). CM group also contained cells with brown nuclei, indicating apoptotic DNA (Fig. 5C, F). Apoptotic cells were significantly more prevalent in the M group than in the C group, but they were less prevalent in the CM group than in the M group (Fig. 5G). The results indicated that hUCB-MSC-CM could attenuate apoptosis in the lung tissues of treated PAH rats.

DISCUSSION

In this study, we tested the effects of CM infusion on PAH affected lung tissue in a rat model. It was previously demonstrated that CM of hUCB-MSCs contain active levels of a number of disease modifying growth factors and cytokines. 21,22 CM of hUCB-MSCs contain sizable levels of angiopoietin, hepatocyte growth factor, interleukin-4, insulin-like growth factor, placental growth factor, vascular endothelial cell growth factor, angio- genin, stem cell factor, and tyrosine hydroxylase. 5,23-25 Our previous studies demonstrated the neuroprotective effects of conditioned media from hADSC and hNSC in rat models of stroke and Huntington’s disease. 14,15 Therefore, we chose to test the CM prepared from hUCB-MSCs in a PAH rat model for therapeutic signals.

MSCs are multipotent stromal cells that have self-renewal capacity, and can differentiate into a variety of cell types such as osteoblasts, chondrocytes, myocytes, and adipocytes. 26,27 MSCs have been isolated from several different sources such as embryonic tissue, bone marrow, adipose tissue, and the placenta. 28 MSCs are the source of many immune-dampening cytokines and in this regard, have demonstrated potency in a number of disease mod-
In addition the secreted factors from MSCs display anti-apoptotic, proliferative activity and the cells may be involved in the removal of harmful factors from their vicinity.

From our study, we detected relatively high concentrations of CCL5, TIMP-1, and IL-1α in hUCB-MSC-CM treated lung tissues compared with MCT alone (M) and control (C) groups as confirmed by a rat cytokine array panel (Fig. 1). Cytokines play important roles in a number of biological processes including innate immunity, apoptosis, angiogenesis, cell growth, and differentiation. These processes play important roles in disease protection and recovery.

Lipopolysaccharide-induced CXC chemokine (also termed CXCL5) is a member of the CXC chemokine family, and is a potent neutrophil chemoattractant. A TIMP-1 is a naturally occurring inhibitor of metalloproteinases, and TIMPs inhibit tumorigenesis, cellular invasion, metastasis, and angiogenesis. TIMPs may also promote tumor growth and inhibit apoptosis. These opposite roles of TIMPs in tumor regression and progression have been attributed to modulation by the tissue microenvironment. Many cytokines induce endothelial cells to express adhesion molecules and lead to secretion of chemokines that attract white blood cells to a site of injury. In our study, for the hUCB-MSC-CM treated PAH induced animals, the lung tissues showed significant increases in the number of IL-1α-positive pulmonary arterioles compared with the control group.

IL-1α (and also tumor necrosis factor α) are known to stimulate proliferation of endothelial cells and fibroblasts that increase the blood supply at the site of injury and repair damage. The IL-1 family includes the structurally related proteins IL-1α, IL-1β, and IL-1 receptor antagonist that bind to the same receptor. The IL-1 family plays an important role in interstitial lung diseases. Previous research has demonstrated that IL-1α expression levels in the lung correlated with the development of pulmonary fibrosis in rodents exposed to bleomycin or radiation. Furthermore, studies have demonstrated up-regulation of IL-1α expression in fibro-proliferative areas within the lungs of idiopathic pulmonary fibrosis patients. IHC for IL-1α, CCL5, and TIMP-1 confirmed the lung cell increases for these three cytokines previously seen in the lung homogenates for the three cytokines (Fig. 2). How the characteristics of the above cytokines may either ameliorate or exacerbate the effects of PAH remain to be explored.

The numbers of TUNEL-positive cells in the lung areas were also significantly reduced by the infusion of hUCB-MSC-CM (Fig. 5). The hUCB-MSC-CM treatment was initiated 28 days after induction of PAH. Therefore, the reduction of apoptosis could be due to protective mechanisms of the hUCB-MSC-CM. These therapeutic effects could provide a clinically relevant benefit to patients. For our study, although no cells were implanted, our data demonstrated that an infusion of hUCB-MSC-CM can significantly reduce lung cell apoptosis due to PAH in our rat model. This novel therapeutic modality could be a viable
treatment for PAH and bypass several technical limitations of a direct MSC cell transplantation. The present study also revealed certain changes in chemokine, cytokine, and growth factor levels after hUCB-MSC-CM transfusion in a PAH rat model. Through a complex interaction of these mediators involved in immunomodulation and inflammation, we may expect a positive effect on reducing the impact of PAH on lung cells. Exactly how these cytokines and factors interact to impact the survival of the lung tissue cells remains to be explored. As there are several treatment options available for PAH in people, an effective therapy in prolonging survival remains elusive. Our data with factors present in hUCB-MSC-CM may present an exciting opportunity for more effective therapies.

The limitations of our study included the small sample size and a short follow-up of the treated animals. Future studies with larger sample sizes and a longer duration of treatment will be required, along with standardizing the quality and amount of hUCB-MSC-CM, frequency, and the duration required for the treatment.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
This work was supported by a Korea University grant.

REFERENCES
21. Jeong SY, Kim DH, Ha J, et al. Thrombospondin-2 secreted by hu-

Analysis of Mutations in Epidermal Growth Factor Receptor Gene in Korean Patients with Non-small Cell Lung Cancer: Summary of a Nationwide Survey

Sang Hwa Lee · Wan Seop Kim · Yoo Duk Choi · Jeong Wook Seo · Jong Ho Han · Mi Jin Kim · Lucia Kim · Geon Kook Lee · Chang Hun Lee · Mee Hye Oh · Gou Young Kim · Sun Hee Sung · Kyo Young Lee · Sun Hee Chang · Mee Sook Rho · Gou Young Kim · Sun Hee Chang · Soon Hee Jung · Se Jin Jang

The Cardiopulmonary Pathology Study Group of Korean Society of Pathologists

Department of Pathology, Konkuk University School of Medicine, Seoul; *Chonnam National University Medical School, Gwangju; **Seoul National University College of Medicine, Seoul; *Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; *Yeungnam University College of Medicine, Daegu; *Ewha University College of Medicine, Incheon; **National Cancer Center, Goyang; *Busan National University School of Medicine, Busan; *Soochunhyang University Cheonan Hospital, Soochunhyang University College of Medicine, Cheonan; *Kyung Hee University School of Medicine, Seoul; *Ewha Womans University School of Medicine, Seoul; **Seoul St. Mary’s Hospital, Catholic University of Korea, Seoul; **Seoul National University Ilsan Paik Hospital, Goyang; *Dong-A University College of Medicine, Busan; *Korea University College of Medicine, Seoul; *Yonsei University Wonju College of Medicine, Wonju; *Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Received: April 24, 2015
Revised: September 13, 2015
Accepted: September 14, 2015

Corresponding Author
Wan Seop Kim, MD, PhD
Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
Tel: +82-2-2030-3642
Fax: +82-2-2030-5629
E-mail: wskim@kuh.ac.kr

Background: Analysis of mutations in the epidermal growth factor receptor gene (EGFR) is important for predicting response to EGFR tyrosine kinase inhibitors. The overall rate of EGFR mutations in Korean patients is variable. To obtain comprehensive data on the status of EGFR mutations in Korean patients with lung cancer, the Cardiopulmonary Pathology Study Group of the Korean Society of Pathologists initiated a nationwide survey. Methods: We obtained 1,753 reports on EGFR mutations in patients with lung cancer from 15 hospitals between January and December 2009. We compared EGFR mutations with patient age, sex, history of smoking, histologic diagnosis, specimen type, procurement site, tumor cell dissection, and laboratory status. Results: The overall EGFR mutation rate was 34.3% in patients with non-small cell lung cancer (NSCLC) and 43.3% in patients with adenocarcinoma. EGFR mutation rate was significantly higher in women, never smokers, patients with adenocarcinoma, and patients who had undergone excisional biopsy. EGFR mutation rates did not differ with respect to patient age or procurement site among patients with NSCLC. Conclusions: EGFR mutation rates and statuses were similar to those in published data from other East Asian countries.

Key Words: Lung neoplasms; Receptor, epidermal growth factor; Mutation survey
Lung cancer is the leading cause of cancer-related death in Korea, accounting for approximately 20% of all cancer deaths. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancers, and the majority of patients with NSCLC present at an advanced cancer stage (stage III or IV). In the last decade, several studies have been performed on the molecular stratification of NSCLC in order to provide targeted treatment based on activating or driver mutations in these tumors. Activating mutations in the epidermal growth factor receptor gene (EGFR) can be used as therapeutic targets for treatment of NSCLC. In the Iressa Pan-Asia Study, tumors with EGFR mutations showed a 71.2% clinical response to first-line treatment with gefitinib, while tumors with wild-type EGFR showed only a 1.1% response. Since then, several randomized control studies have shown an association between activating EGFR mutation and response to EGFR tyrosine kinase inhibitors (TKIs). Patient selection is important for using EGFR TKIs as the first-line treatment. At present, analysis of EGFR mutations is the accepted method for identifying patient response to EGFR TKIs. Direct DNA sequencing is a standard method for identifying mutations and is commonly used in the Asia-Pacific region. Any routinely available pathological specimen can be used for analyzing EGFR mutations, including formalin-fixed, paraffin-embedded tissues from surgical resections; small tissue biopsies; or cell block preparations.

Several publications have reported the prevalence of EGFR mutations in patients with NSCLC. The rates of EGFR mutations are higher in Asian countries than in Western countries. Further, rates of EGFR mutations in Korean patients range from 17.4% to 51.3%. Therefore, we performed a nationwide study of EGFR mutations in Korean patients with NSCLC in order to provide reliable information on the incidence and characteristics of EGFR mutations. This study was led by the Korean Cardiopulmonary Pathology Study Group.

MATERIALS AND METHODS

In all, 1,826 reports of EGFR mutation in patients with lung cancer were collected from 15 hospitals between January and December 2009 (Fig. 1). Of these, 24 reports of patients with small cell carcinoma and 49 reports of patients with malignancies from other than lung primary tumors were excluded from the study. Finally, 1,544 reports of primary tumor and 209 reports of metastatic tumor were included in the study. EGFR mutation status was compared with patient age, sex, history of smoking, histologic diagnosis, specimen type, procurement site, tumor cell dissection, and laboratory status. Smoker status was defined as having a greater than 10 pack-year history and currently smoking cigarettes every day or most days. An ex-smoker was someone who had smoked more than 100 cigarettes in their lifetime and who does not currently smoke. A light smoker was defined as a current smoker with a less than 10 pack-year history. A never-smoker was an adult who had never smoked a cigarette or who smoked fewer than 100 cigarettes in their lifetime.

Tumor specimens were divided into three types, namely, biopsy, cytology, and excision specimens. Biopsy specimens included small biopsy specimens obtained by performing bronchoscopic biopsy, transbronchial lung biopsy, percutaneous needle biopsy, pleural biopsy, or needle biopsy of metastatic sites. Cytology included cytologic specimens such as sputum, bronchial washing/brushing, pleural fluids, and aspiration biopsy cytology of primary or metastatic sites. Excision specimens included specimens obtained by performing excisional surgical biopsy such as segmentectomy, lobectomy, pneumonectomy, and metastasectomy. Procurement sites were divided into two types, namely, metastasis and primary sites. Tumor dissection indicated whether or not to perform microdissection of tumor cells. Laboratory status was classified into two types: in-house mutation testing, indicating that EGFR mutation analysis was performed in the hospital’s laboratory facility, and out-sourced mutation testing, indicating that EGFR mutation analysis was not performed in the hospital’s laboratory facility. All participants in the study were active members of the Korean Cardiopulmonary Pathology Study Group. This study was approved by the Institutional Review Board of Konkuk University Medical Center (No. KUH 1210011).

Fig. 1. Geographical distribution of the 15 hospitals in Korea.
Statistical analysis

All statistical analyses were performed using SPSS ver. 18.0 (SPSS Inc., Chicago, IL, USA). Chi-square test and Fisher exact test were used to determine the correlations between EGFR mutation status and clinicopathological parameters. A p-value of < .05 was considered statistically significant.

RESULTS

Patient characteristics

The average age of 1,753 patients with NSCLC was 62.74 ± 11.31 years (range, 16 to 89 years); of these, 875 patients (49.9%) were aged ≥ 65 years. Of the 1,753 patients, 1,000 (57%) were men and 753 (43%) were women. Of the 1,753 patients, 555 (31.7%) were smokers, 39 (2.2%) were light smokers, 170 (9.7%) were ex-smokers, 849 (48.4%) were never-smokers, and 140 (8.0%) patients had an unknown smoking history. Of the specimens used for EGFR mutation testing, 114 (6.5%) were cytology specimens, 1,066 (60.8%) were biopsy specimens, and 573 (32.7%) were excision specimens (Fig. 2). With respect to procurement sites, specimens from 1,544 patients (88.1%) were procured from primary tumor sites, while those from 209 patients (11.9%) were procured from metastatic sites. In all, 1,012 patients (57.7%) underwent tumor microdissection, while the remaining 741 patients (42.3%) did not. The histological types of the tumor specimens were as follows: adenocarcinoma in 1,292 (73.7%), squamous cell carcinoma in 347 (19.8%), NSCLC type undetermined in 69 (3.9%), pleomorphic carcinoma in 13 (0.7%), large cell neuroendocrine cell carcinoma in 12 (0.7%), large cell carcinoma in nine (0.5%), sarcomatoid carcinoma in five (0.3%), carcinoid tumor in two (0.1%), mucoepidermoid carcinoma in two (0.1%), carcinosarcoma in one (0.05%), and lymphoepithelioma-like carcinoma in one (0.05%). Among the 1,753 EGFR tests, 1,299 (7 institutions, 74.1%) were performed within the same pathology laboratory, and 454 (8 institutions, 25.9%) were performed in outside laboratories. EGFR mutations in specimens obtained from 14 hospitals were identified by direct sequencing, while those in specimens obtained from the remaining hospital were identified by pyrosequencing. Characteristics of patients included in the study are summarized in Table 1.

Frequency of EGFR mutations

In all, 601 cases of EGFR mutation (34.3%) were detected in NSCLC. Of these 601 patients, 560 (43.3%) had adenocarcinoma, 30 (8.6%) had squamous cell carcinoma, eight (11.6%) had NSCLC type undetermined, two (15.4%) had pleomorphic carcinoma, and one (8.3%) had large cell neuroendocrine carcino-

![Fig. 2. Specimen types used for EGFR mutation testing. EGFR, epidermal growth factor receptor.](http://dx.doi.org/10.4132/jptm.2015.09.14)
ma. In all, 389 never-smokers with adenocarcinoma (52.4%) had EGFR mutations. Of the 601 patients with NSCLC who had EGFR mutations, 30 (5%), 313 (52.1%), 31 (5.2%), and 205 (34.1%) had mutations in exons 18, 19, 20, and 21, respectively; in addition, 22 patients (3.7%) had double mutations (Fig. 3). Further, 13 patients (2.2%) had T790M mutation; of these, four patients had only the T790M mutation.

Interestingly, specimens obtained from two in-house laboratories showed low EGFR mutation rates of 16.7% (2/12 specimens) and 9.3% (4/43 specimens) in patients with NSCLC, respectively, and 28.6% (2/7 specimens) and 11.5% (3/26 specimens) in patients with adenocarcinoma and never-smokers (Fig. 4). In brief, one laboratory that detected a 16.7% mutation rate in patients with NSCLC analyzed tumor specimens from 12 patients. Of these 12 patients, 10 had adenocarcinoma, one had large cell carcinoma, and one had NSCLC. Of the 10 patients with adenocarcinoma, seven, two, and one were never-smokers, ex-smokers, and smoker, respectively. All the specimens were obtained by surgical excision and were analyzed by tumor microdissection. The laboratory that detected a 9.3% mutation rate in patients with NSCLC analyzed tumor specimens from 43 patients. Of these 43 patients, 41 had adenocarcinoma, one had NSCLC, and one had squamous cell carcinoma. Of the 41 patients with adenocarcinoma, 25, 6, and 10 were never-smokers, ex-smokers, and smokers, respectively. Of the 43 specimens analyzed in this laboratory, six were surgical excision specimens, 29 were biopsy specimens, and eight were cytology specimens.

All 43 specimens were analyzed without tumor microdissection. A total of four EGFR mutations were found, and all of them were adenocarcinoma. They included three never-smokers and one ex-smoker. Moreover, of the four mutations, two were detected in excision specimens and two were detected in biopsy specimens.

A total of 125 EGFR mutations were detected in a total of 430 male patients with adenocarcinoma who had a smoking history.

Differences in EGFR mutation status

Differences in EGFR mutation status according to clinico-pathological variables are summarized in Table 2. Among patients with NSCLC, female (p < .001), age < 65 years (p = .007), light or no smoking (p < .001), excision specimen (p = .002), and in-house EGFR mutation testing (p < .001) were correlated with significantly higher EGFR mutation rate. Among patients with adenocarcinoma, female (p < .001), light or no smoking (p < .001), excision specimen (p < .001), tumor microdissection (p = .001), and in-house EGFR mutation testing (p = .046) were correlated with significantly higher EGFR mutation rate. According to specimen status, the EGFR mutation rate was 48.1%, 47.2%, and 63.4% in cytology, biopsy, and excision specimen, respectively, from a total of 742 patients with adenocarcinoma and never-smoker status. According to laboratory status, the EGFR mutation rate in patients with NSCLC (38.2% vs 23.1%, p < .001) and adenocarcinoma (44.7% vs 37.6%, p = .046) was significantly higher in in-house tested specimens. Among patients with squamous cell carcinoma, female (p = .001) and light to no smoking (p = .017) were correlated with significantly higher EGFR mutation rate.

DISCUSSION

The present study identified the frequencies of EGFR mutations in Korean patients with NSCLC. The EGFR mutation rate was 34.3% and 43.3% among patients with NSCLC and adeno-
carcinoma, respectively, and 52.4% among never-smokers with adenocarcinoma. The frequencies were in the range of those previously reported in Korean studies, with 17.4%–40.8% in NSCLC, 21.5%–54.4% in adenocarcinoma, and 47%–64.9% in adenocarcinoma with never-smokers.10,15-21 The results of the present study were also in the range of those from other Asian countries (30%–61.1% in NSCLC and 44.1%–67.4% in adenocarcinoma) and showed a high mutation rate compared with those reported in Western countries (4.5%–13.3% in NSCLC and 21.5%–54.4% in adenocarcinoma, respectively, and 52.4% among never-smokers with adenocarcinoma). The frequencies were in the range of those previously reported in Korean studies, with 17.4%–40.8% in NSCLC, 21.5%–54.4% in adenocarcinoma, and 47%–64.9% in adenocarcinoma with never-smokers.10,15-21 The results of the present study were also in the range of those from other Asian countries (30%–61.1% in NSCLC and 44.1%–67.4% in adenocarcinoma) and showed a high mutation rate compared with those reported in Western countries (4.5%–13.3% in NSCLC and 44.1%–67.4% in adenocarcinoma).10,15-21 Recently, a large retrospective database study was performed on \textit{EGFR} mutation testing practices in the Asia-Pacific region.10,12,23 \textit{EGFR} mutation rates among patients with NSCLC reported in the present study were very similar to those reported by Yatabe et al.10 (39.6% and 35.8% \textit{EGFR} mutation rate among newly diagnosed patients with NSCLC) in the Asia-Pacific region and Korea, respectively, in 2011. The overall distribution pattern of \textit{EGFR} mutations (i.e., high mutation rates in female patients, never-smokers, and patients with adenocarcinoma) was similar to that reported in previous studies.

The most frequent mutation was an exon 19 deletion, and the most frequent drug resistance-associated mutation was T790M. Chan et al.24 identified \textit{EGFR} mutation hot spots in exons 19 (48%) and 21 (41%) in 3,023 specimens. The highest incidence of mutations in \textit{EGFR} was observed for L858R, del(E746-A750), and del(E749-T751), in that order. Shi et al.25 reported 43% and 42.6% mutation rates in exons 19 and 21, respectively, among 1,450 specimens, with the most common drug resistance-associated mutation being S768I. The present study reported 52.1% and 34.1% mutation rates in exons 19 and 21, respectively. However, the sum of mutation rates in exons 19 and 21 was 86.2%, which was similar to that reported in studies performed in other countries.

Two laboratories in the present study detected low \textit{EGFR} mutation rates. Commonalities between these two institutions included a period less than 1 year after starting the \textit{EGFR} mutation analysis and use of the direct sequencing method. Well-equipped laboratories and technicians skilled at performing \textit{EGFR} mutation analysis, active engagement of pathologists in molecular testing, and quality assurance were important for ob-

Table 2. \textit{EGFR} mutation status according to the clinicopathological variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>NSCLC</th>
<th>Adenocarcinoma</th>
<th>SqCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td>p-value</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>374 (49.7)</td>
<td>379 (50.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Male</td>
<td>778 (77.8)</td>
<td>222 (22.2)</td>
<td>418 (67.7)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td>.007</td>
</tr>
<tr>
<td>< 65</td>
<td>551 (62.7)</td>
<td>328 (37.3)</td>
<td>399 (56.5)</td>
</tr>
<tr>
<td>> 65</td>
<td>601 (68.8)</td>
<td>273 (31.2)</td>
<td>333 (56.8)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>143 (84.1)</td>
<td>27 (15.9)</td>
<td>88 (77.2)</td>
</tr>
<tr>
<td>Light smoker</td>
<td>22 (56.4)</td>
<td>17 (43.6)</td>
<td>17 (53.1)</td>
</tr>
<tr>
<td>Never smoker</td>
<td>442 (62.1)</td>
<td>407 (37.9)</td>
<td>353 (47.6)</td>
</tr>
<tr>
<td>Smoker</td>
<td>446 (80.4)</td>
<td>109 (19.6)</td>
<td>227 (70.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>99 (70.7)</td>
<td>41 (29.3)</td>
<td>47 (56.6)</td>
</tr>
<tr>
<td>Specimen type</td>
<td></td>
<td></td>
<td>.002</td>
</tr>
<tr>
<td>Biopsy</td>
<td>728 (68.3)</td>
<td>338 (31.7)</td>
<td>453 (59.8)</td>
</tr>
<tr>
<td>Cytology</td>
<td>80 (70.2)</td>
<td>34 (29.8)</td>
<td>70 (67.3)</td>
</tr>
<tr>
<td>Excision</td>
<td>344 (60)</td>
<td>229 (40)</td>
<td>209 (48.6)</td>
</tr>
<tr>
<td>Procurement site</td>
<td></td>
<td></td>
<td>.797</td>
</tr>
<tr>
<td>Metastasis</td>
<td>139 (66.5)</td>
<td>70 (33.5)</td>
<td>95 (58.6)</td>
</tr>
<tr>
<td>Primary</td>
<td>1,013 (65.6)</td>
<td>531 (34.4)</td>
<td>637 (56.4)</td>
</tr>
<tr>
<td>Tumor dissection</td>
<td></td>
<td></td>
<td>.362</td>
</tr>
<tr>
<td>No</td>
<td>478 (64.5)</td>
<td>263 (35.5)</td>
<td>401 (61.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>674 (66.6)</td>
<td>338 (33.4)</td>
<td>331 (51.9)</td>
</tr>
<tr>
<td>Laboratory status</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>In-house</td>
<td>803 (61.8)</td>
<td>496 (38.2)</td>
<td>581 (55.3)</td>
</tr>
<tr>
<td>Out-sourcing</td>
<td>349 (76.9)</td>
<td>105 (23.1)</td>
<td>151 (62.4)</td>
</tr>
</tbody>
</table>

Values are presented as number (%).

\textit{EGFR}, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; SqCC, squamous cell carcinoma.
taining accurate results.

A high incidence of EGFR mutations (29.7%) has been reported in Korean male smokers with adenocarcinoma. In the present study, EGFR mutation rate was 29.1% in male patients with adenocarcinoma who had a smoking history (125 out 430 patients). This result supports the recommendation of a previous study that EGFR mutation tests should be performed in all patients with adenocarcinoma regardless of sex or smoking history.

Because minimally invasive diagnostic procedures are often used in the diagnostic workup of lung cancer, small tissue specimens and, more importantly, cytology specimens might be the only specimens available for EGFR mutation analysis. In the present study, a total of 73.3% of specimens were cytology or biopsy samples. However, these specimens showed a significantly low mutation rate compared to excision specimens in patients with NSCLC even in patients with adenocarcinoma and never-smokers. Although our results showed significantly higher mutation rates in surgically resected specimens, many studies have reported that small biopsy and cytology specimens are more suitable for performing mutation testing.

A quick and accurate test for detecting EGFR mutations is very important for proper selection of patients for EGFR TKI therapy. This highlights the need for standard guidelines specific to medical conditions in Korea for EGFR mutation testing. Many methods are available for detecting EGFR mutations, and these methods have different advantages and disadvantages. However, there is no consensus on the best method for detecting EGFR mutations. In Korea, most pathology laboratories use direct DNA sequencing, pyrosequencing, or the peptide nucleic acid (PNA) clamp method for detecting EGFR mutations in formalin-fixed, paraffin-embedded tissue specimens. In the present study, specimens obtained from 14 hospitals were analyzed using direct DNA sequencing, a classic method for detecting mutations. However, this technique is associated with low sensitivity and requires >25% mutant DNA for analysis. Pyrosequencing is a more sensitive method that needs more than 1% to 20% mutant DNA for analysis. PNA clamping is a simple, rapid, and sensitive method that can detect mutations in as few as 1% mutant alleles in a mixture of mutant and wild-type DNA. These three methods show a good concordance of 82%-87.5%. We recommend that the use of the available methods for EGFR mutation analysis in each institution and laboratory should be under strict quality control. The quality and quantity of DNA are important for avoiding false-negative results. In the present study, tumor microdissection specimens from patients with adenocarcinoma showed higher mutation rates than non-dissection specimens. We recommend that pathologists verify the adequacy of specimens and reanalyze EGFR mutations to prevent false-negative results.

According to laboratory status, the EGFR mutation rate in patients with NSCLC (38.2% vs 23.1%, p < 0.001) and adenocarcinoma (44.7% vs 37.6%, p = 0.046) was significantly higher in the in-house test in the present study. However, the proportion of never-smoker patients with adenocarcinoma was 48.3% (628 out 1,299 patients) in the in-house test and 25.1% (114 out 454 patients) in the out-sourced test. Moreover, EGFR mutation rate in never-smokers with adenocarcinoma was 52.7% based on in-house mutation testing and 50.9% based on out-sourced mutation testing. These results indicate significant differences between in-house and out-sourced mutation testing, which might be because of a bias in patient selection.

In the future, we will aim to develop recommendations for more standardized application and interpretation of results of EGFR mutation tests in patients with NSCLC. These recommendations will discuss patients, turnaround time, specimen type, minimum specimen size, specimen collection and storage, tumor cell content, methodology such as DNA extraction, and reporting form. In addition, we aim to design a QA program for use during EGFR mutation analysis.

The present study had limitations. Pathological diagnosis of patients included in the study was not confirmed. In addition, immunohistochemical staining to classify the histologic type of NSCLC was not performed for all patient samples. Further, our data were collected from hospitals where diagnosis was performed by pulmonary pathologists. Therefore, our results might represent the current status of NSCLC subtypes in Korea.

In conclusion, EGFR mutation rate showed significant differences with respect to sex, smoking history, histologic diagnosis, specimen type, tumor cell dissection, and institution. However, it did not show differences with respect to age, procurement site, or laboratory status. The relative frequency of EGFR mutations in Korea was not similar to those reported in other Asian countries.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
We would like to sincerely thank Seo-Young Oh, MS; Noh-Young Lee, MS; and Yoo-Min Hong, MRA for their devoted efforts toward data set mining and cleaning.
REFERENCES

Chronic Placental Inflammation in Twin Pregnancies

Heejin Bang1 · Go Eun Bae1
Ha Young Park1 · Yeon Mee Kim2
Suk-Joo Choi1 · Soo-young Oh1
Cheong-Rae Roh1 · Jung-Sun Kim1,4

1Department of Pathology and Translational Genomics, Samsung Medical Center,
Sungkyunkwan University School of Medicine, Seoul; 2Department of Pathology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan; 3Department of Obstetrics and Gynecology, Samsung Medical Center,
Sungkyunkwan University School of Medicine, Seoul; 4Department of Health Sciences and Technology, Sungkyunkwan University, SAIHST, Seoul, Korea

Background: Chronic placental inflammation, such as villitis of unknown etiology (VUE) and chronic chorioamnionitis (CCA), is considered a placental manifestation of maternal anti-fetal rejection. The aim of this study is to investigate its frequency in twin pregnancies compared to singleton pregnancies.

Methods: Three hundred twin placentas and 1,270 singleton placentas were consecutively collected at a tertiary medical center in Seoul, Republic of Korea from 2009 to 2012. Hematoxylin and eosin sections of tissue samples (full-thickness placental disc and chorioamniotic membranes) were reviewed.

Results: Non-basal VUE was more frequent in twin placentas than in singleton placentas (6.0% vs 3.2%, p < .05). In preterm birth, CCA was found less frequently in twin placentas than in singleton placentas (9.6% vs 14.8%, p = .05), reaching its peak at an earlier gestational age in twin placentas (29–32 weeks) than in singleton placentas (33–36 weeks). CCA was more frequent in twin pregnancies with babies of a different sex than with those with the same sex (13.8% vs 6.9%, p = .052). Separate dichorionic diamniotic twin placenta were affected by chronic deciduiitis more frequently than singleton placentas (16.9% vs 9.7%, p < .05).

Conclusions: The higher frequency of non-basal VUE in twin placentas and of CCA in twin placentas with different fetal sex supports the hypothesis that the underlying pathophysiological mechanism is maternal anti-fetal rejection related to increased fetal antigens in twin pregnancies. The peak of CCA at an earlier gestational age in twin placentas than in singleton placentas suggests that CCA is influenced by placental maturation.

Key Words: Placenta; Inflammation; Twins; Preterm birth

Chronic inflammation of the placenta can be present in the chorionic villous tree, extraplacental chorioamniotic membranes, and the basal plate of the placenta, which are called chronic villitis, chronic chorioamnionitis (CCA), and chronic deciduiitis (CD), respectively. Infection may cause some of the chronic placental inflammation; however, infectious microorganisms are not identified in a majority of cases. Chronic villitis in such cases is called villitis of unknown etiology (VUE). It is defined by the infiltration of maternal lymphocytes into the fetal chorionic villi, and we have shown that fetal placental macrophages also participate in VUE.1 Its prevalence is reported to range from 2% to 33.8%,2 and it is more frequent in placentas at term than at preterm. VUE at term is usually subclinical, while high-grade or diffuse VUE is associated with fetal growth restriction, intrauterine fetal death, or fetal central nervous system injury.3,4 CCA is characterized by maternal lymphocytic infiltration into the chorioamniotic membranes and chorionic plate.5,6 A series of recent studies have demonstrated that CCA is another major pathology of preterm birth, especially of late preterm births.7,8 CCA is also frequently found in intrauterine fetal death cases.9 CD is defined by the accumulation of lymphocytes and plasma cells in the decidua of the basal plate10 and often accompanies basal VUE that involves anchoring villi. It is associated with fetal growth restriction and preterm labor.11-14

The fetus and placenta are semi-allografts to the mother. Immune tolerance is required for successful pregnancy.15,16 Accumulating evidence from recent studies suggests that maternal anti-fetal rejection may explain the pathogenesis of VUE and CCA.17-19 An immune origin of CD has also been suggested, as this condition has been reported more frequently in pregnancies resulting from donor egg in vitro fertilization pregnancies.20,21
The rate of multiple pregnancies has increased over the past three decades to reach 33.7 per 1,000 total births in the United States in 2013, which results from the expanded use of fertility enhancing therapies and an older maternal age at childbearing. Infants born in multiple gestation pregnancies are at a higher risk of adverse birth outcomes than singletons mainly because of the increased frequency of preterm birth in addition to twin-specific complications, such as twin-to-twin transfusion syndrome and discordant growth restriction. A thorough investigation of chronic placental inflammation in twin placentas has not been performed, though some reports have focused on the relationship between VUE and intrauterine growth restriction (IUGR) in twin placentas.

In this study, we compared the frequencies of chronic placental inflammation, VUE, CCA, and CD between twin and singleton placentas collected consecutively at a tertiary medical center in order to investigate whether chronic inflammation is more frequent in twin placentas because of the increased burden of fetal semi-allograft antigens.

MATERIALS AND METHODS

Three hundred twin placentas (77 separate dichorionic diamniotic [DiDiS], 147 fused dichorionic diamniotic [DiDiF], 66 monochorionic diamniotic [MoDi], 8 monochorionic monoamniotic [MoMo], and 2 unknown type) and 1,270 singleton placentas were consecutively collected at Samsung Medical Center, Seoul, Republic of Korea, from 2009 to 2012. The study was approved by the institutional review board of the hospital (2011-07-063).

Preterm birth was defined as delivery before 37 weeks of gestation and was categorized as (1) spontaneous preterm births resulting from preterm labor and intact membranes, and preterm premature rupture of membranes; and (2) indicated preterm births due to maternal and/or fetal conditions necessitating preterm delivery. IUGR was defined as birth weight below the 10th percentile, and discordant growth in twins was defined as more than 15% difference in birth weight.

Tissue samples of the full-thickness placental disc (n = 2) and chorioamniotic membranes roll (n = 1) for each placenta, and also of the dividing membranes if present, were obtained for microscopic examination and were formalin-fixed for 24 hours. The hematoxylin and eosin stained sections were reviewed for the presence of chronic inflammation. VUE, CCA, and CD were diagnosed according to the previously described criteria in the literature. Briefly, VUE was defined as lymphohistioctytic infiltration affecting varying proportions of the villous tree of the placenta without any signs or symptoms of infection in either the mother or the infant. It is sub-classified as basal type, which involves villi anchoring to the basal plate, and non-basal (distal and proximal) type, which involves distal villi (terminal and mature intermediate villi) and/or stem villi. The diagnosis of CCA was made when there was lymphocytic infiltration into the choriocapillaris of the chorionic trophoblast layer and/or chorionic villus connective tissue. CD was diagnosed when lymphocytic infiltration was diffuse and/or any plasma cells were detected in the decidua. The cases were examined by a single pathologist (J.-S.K.) who was blind to clinical information.

RESULTS

Clinical characteristics of twin pregnancies in this study

The demographics and clinical characteristics of the study population are summarized in Table 1. There were significant differences in the gestational age at delivery, gravity, labor at delivery, preterm birth, and IUGR between singleton and twin pregnancies (p < .05). Maternal age, previous abortion, the ratio of spontaneous/indicated preterm birth, and hypertensive disorders were not significantly different.

Frequency of chronic inflammation in twin placenta

The frequencies of the three types of chronic placental inflammation (VUE, CCA, and CD) were not statistically different between twin and singleton placentas. Twin placentas had a tendency of high frequency of VUE (11.3% [34/300] vs 7.9% [100/1,270], p = .054) and CD (13.0% [36/300] vs 9.7% [123/1,270], p = .09) compared with singleton placentas, whereas they showed a tendency of low frequency of CCA (9.3% [28/300] vs 13.3% [169/1,270], p = .062) (Fig. 1A, C, D). The frequency of the non-basal type of VUE was higher in twin placentas than in singleton placentas (6.0% [18/300] vs 3.2% [41/1,270], p < .05). There was no difference in the frequency of basal VUE between twin and singleton placentas (5.3% [16/300] vs 4.6% [59/1,270], p > .05) (Fig. 1B).

There were no significant differences in the frequencies of VUE (10.2% [23/225] vs 15.1% [11/73]), CCA (9.3% [21/225] vs 13.0% [36/270], p = .062), and CD (13.0% [36/270] vs 9.7% [123/1,270], p = .09) between the study groups.
Chronic inflammation in twin placentas

vs 9.6% [7/73], or CD (13.8% [31/225] vs 11.0% [8/73]) between dichorionic (DiDiS and DiDiF) and monochorionic (MoDi and MoMo) placentas (p > .05). CD was significantly more frequent in DiDiS twin placentas compared with singleton placentas (16.9% [13/77] vs. 9.7% [123/1,270], p < .05), but the frequencies of VUE and CCA were not significantly different among the twin types.

Table 1. Clinical characteristics of the study groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Singleton (n=1,270)</th>
<th>Twin (n=300)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>33 (18–52)</td>
<td>34 (22–42)</td>
<td>.226</td>
</tr>
<tr>
<td>Gestational age at delivery (wk)</td>
<td>35 (20–42)</td>
<td>34 (21–40)</td>
<td>.001</td>
</tr>
<tr>
<td>Primigravida</td>
<td>514 (41)</td>
<td>143 (48)</td>
<td>.024</td>
</tr>
<tr>
<td>Abortion history</td>
<td>398 (31)</td>
<td>86 (29)</td>
<td>.367</td>
</tr>
<tr>
<td>Labor at delivery</td>
<td>833 (67)</td>
<td>160 (54)</td>
<td>.000</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>886 (70)</td>
<td>230 (77)</td>
<td>.018</td>
</tr>
<tr>
<td>Spontaneous/indicated</td>
<td>651 (73)/235 (27)</td>
<td>175 (70)/55 (24)</td>
<td>.421</td>
</tr>
<tr>
<td>Maternal hypertensive disorders</td>
<td>149 (12)</td>
<td>35 (12)</td>
<td>.99</td>
</tr>
<tr>
<td>Intrauterine growth restriction</td>
<td>278 (22)</td>
<td>122 (41.1)</td>
<td>.000</td>
</tr>
<tr>
<td>Intrauterine fetal death</td>
<td>47 (4)</td>
<td>18 (6)</td>
<td>.072</td>
</tr>
<tr>
<td>Discordant growth of twin</td>
<td>-</td>
<td>95 (32)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as median (range) or number (%).

Fig. 1. The frequency of chronic placental inflammation in twin placentas. (A) The frequency of villitis of unknown etiology (VUE) is not statistically different between twin and singleton placentas. (B) Non-basal type of VUE is more frequent in twin placentas than in singleton placentas (*p < .05), but basal type of VUE is not. (C, D) The frequencies of chronic chorioamnionitis (CCA) (C) and chronic deciduitis (CD) (D) are not statistically different between twin and singleton placentas.
centas were affected by non-basal VUE more frequently than term singleton placentas (12.9% [9/70] vs 3.6% [14/384], p < .01), but the difference was not detected in preterm placentas (Fig. 2B). The frequencies of basal VUE were not significantly different between singleton and twin placentas either at preterm or at term (Fig. 2C).

CCA was found less frequently in twin placentas than singleton placentas of preterm birth (9.6% [22/230] vs 14.8% [131/886], p < .05) (Fig. 3A). Among preterm births, the decrease of CCA in twin placentas compared with singleton placentas was significant at 33–36 weeks of gestation (late preterm birth) (10.0% [12/120] vs 17.9% [90/505], p < .05). CCA in singleton placentas was most commonly observed at late preterm stage (33–36 weeks of gestation) during gestation as previously reported; however, CCA in twin placentas was most frequent at 29–32 weeks unexpectedly (14.0% [6/43]) (Fig. 3B).

CD was detected at similar frequencies between preterm and term placentas (Fig. 4A). The high frequency of CD in DiDiS twin placentas compared with singleton placentas was more prominent at term (31.6% [6/19] vs 8.3% [32/384], p < .01) (Fig. 4B).

Correlation of chronic inflammation with clinical characteristics in twin placentas

VUE in singleton placentas was found more frequently in IUGR cases than in non-IUGR cases (12.9% [36/278] vs 6.5% [64/985], p < .001). Of these cases, non-basal VUE was more frequent in IUGR cases than in non-IUGR cases (7.6% [21/278] vs 2.0% [20/985]), p < .001). Non-basal VUE in twin placentas was more frequent in IUGR cases than in non-IUGR cases (9.8% [12/122] vs 3.4% [6/175], p < .05), though VUE showed no significant correlation with IUGR in twin placentas (13.1% [16/122] vs 10.3% [18/175]) (Fig. 5A, B). Neither CCA nor CD correlated with IUGR in this study (Fig. 5C, D).

VUE was more frequent in indicated preterm birth than in spontaneous birth of singleton placentas (10.2% [24/235] vs 6.3% [41/651], p < .05) (Fig. 6A). Non-basal VUE was more
frequent in indicated preterm birth than in spontaneous birth of both singleton and twin placentas (singleton, 5.5% [13/235] vs 2.2% [14/651]; twin, 9.1% [5/55] vs 2.3% [4/175], p < .05) (Fig. 6B). When the frequencies of chronic placental inflammation were compared after preterm cases were divided into spontaneous and indicated preterm birth groups, none of the chronic inflammation conditions showed any statistically significant differences between singleton and twin placentas (Fig. 6A–D).

CCA showed a tendency toward higher frequency in twin pregnancies with babies of a different sex than with those of the same sex (13.8% [15/109] vs 6.9% [13/189], p = .052), whereas the frequencies of VUE and CD were not significantly different between twin pregnancies of a different sex and those of the same sex. The frequencies of chronic inflammation in twin placentas had no significant correlation with primigravida, previous abortion, intrauterine fetal death, or discordant growth (p > .05).

Chronic placental inflammation was detected in either one or

Fig. 4. The frequency of chronic deciduitis (CD) in twin placentas at preterm and term birth. (A) CD is detected at similar frequencies between preterm and term placentas. (B) Separate dichorionic diamniotic (DiDiS) twin placentas are affected by CD more frequently than singleton placentas, especially at term (**p < .01).

Fig. 5. Association of villitis of unknown etiology (VUE) with intrauterine growth restriction (IUGR). (A) VUE is found more frequently in singleton placentas of IUGR cases than in those of non-IUGR cases (**p < .001). (B) Non-basal VUE in singleton and twin placentas is more frequent in IUGR cases than in non-IUGR cases (singleton, ***p < .001; twin, *p < .05). (C, D) The frequencies of chronic chorioamnionitis (C) and chronic deciduitis (D) are not associated with IUGR.
both twin placentas (VUE, 7.3% [22/300] vs 4.0% [12/300]; CCA, 5.4% [16/300] vs 4.0% [12/300]; CD, 7.7% [23/300] vs 6.0% [18/300]). The presence of chronic inflammation in one or both twin placentas was not correlated with other clinical and placental characteristics, including baby sex, chorionicity, and discordant growth. There were 11 cases of IUGR in only one fetus of twin pregnancies with VUE, of which eight cases had VUE in only one placenta and the other three cases had VUE in both placentas, suggesting a tendency of correlation between IUGR and VUE that was not statistically significant.

DISCUSSION

In this study, the frequency of VUE, non-basal type, was higher in twin placentas than in singleton placentas. Non-basal VUE had a correlation with IUGR in twin placentas as in singleton placentas. Unexpectedly, CCA was found less frequently in twin placentas than in singleton placentas of preterm birth. The frequency peak of CCA in twin placentas was present at 29–32 weeks in contrast to that of singleton placentas at 33–36 weeks. CCA was more frequent in twin pregnancies of a different sex than in those of the same sex. The frequency of CD was higher in DiDiS twin placentas than in singleton placentas.

Chronic placental inflammation is present as chronic villitis, CCA, and CD, depending on the affected compartment of the placenta. Some of the chronic placental inflammation may be caused by infectious agents, such as viruses, bacteria, and parasites. However, evidence of infectious etiology is not identified in most cases of chronic placental inflammation. Maternal anti-fetal rejection is suggested to play a role in the pathogenesis of these conditions. Destruction of chorionic villi (VUE) and chorionic trophoblast layer (CCA) of fetal origin by infiltration of maternal CD8+ T cells, along with activation of fetal macrophages, is the histopathological hallmark of these lesions.

The pathogenetic mechanism of a rejection process is also supported by the elevation of local and systemic T-cell chemokines and the presence of fetal HLA-specific antibodies in the maternal serum. VUE of non-basal type was more frequent in twin placentas than singleton placentas, and the difference was more prominent at term when VUE was detected more often in singleton placentas. The increased fetal antigen burden in twin placentas...
could be related to its high frequency. In contrast, basal VUE was detected at a similar frequency between singleton and twin placentas. Basal VUE may be influenced partly by a different immunologic mechanism compared with non-basal VUE, which is supported by the presence of plasma cells in basal villitis as well as its association with CD. CD did not show a frequency difference between twin and singleton placentas in this study; however, the frequency of CD was increased in DiDiS twin placentas. DiDiS twin placentas are the type with the highest chance of dizygosity, which has more fetal antigens than the other types of twin placentas. This result suggests that it is also an anti-fetal rejection phenomenon, at least in part, which is relevant to the increase of CD in egg donor pregnancies.20,21 The frequency of CCA was increased in twin placentas of a different sex, which also indicated the increased fetal antigen burden. Twin pregnancies with different fetal sex are definitely dizygotic, therefore these placentas could have higher allograft antigenicity compared with those with the same fetal sex. Further studies are required to elucidate why there was no significant difference in VUE and CD between twin placentas with different fetal sex and those with the same sex.

Unexpectedly, CCA was decreased in twin placentas compared with singleton placentas at preterm. As previously reported, CCA was most frequent at 33–36 weeks gestation in singleton placentas in this study,8 while the highest frequency of CCA in twin placentas was detected at 29–32 weeks of gestation, which is earlier than in singleton placentas. In general, maturation of twin placentas is accelerated compared to singleton placentas at the same gestational age. The period of vulnerability to CCA may be shifted earlier due to accelerated maturation of twin placentas. These results suggest that CCA is also a manifestation of host anti-graft rejection, but a maturation-related factor may play a role in CCA.

The association of VUE with IUGR is well known by previous studies.28,30-32 In this study, it was confirmed in singleton placentas, and the non-basal type of VUE was associated with IUGR in twin placentas. This result also explains the high frequency of VUE in indicated preterm birth, which included most of the IUGR cases. Several previous reports showed that villitis was more severe in the placenta of the twin that weighed less, though the correlation was not confirmed statistically.2-4,23-25 In this study, the degree of VUE was not included for analysis. The absence of a significant association of IUGR with the total VUE in twin placentas might be influenced by various twin-specific factors resulting in IUGR, such as limitation of the uterine space, insufficient uteroplacental function, twin-to-twin transfusion syndrome, and so on.35

This study has some limitations. First, the enrollment of the study population was not prospective or fully consecutive, because some placentas from normal term pregnancies were not included. The institution where the placentas were collected was a tertiary medical center that takes care of more complicated cases; therefore, the cases likely do not represent the pregnancies of the general population. Second, the twin placentas were subdivided according to chorionicity but not zygosity, which would more reliably represent an increased antigen burden. These limitations might make the results less significant. However, it was clearly demonstrated that non-basal VUE was increased in twin placentas, and that CCA was decreased in preterm twin placentas. It is suggested that VUE and CCA are the region-specific manifestations of maternal anti-fetal rejection in the placenta, but their pathophysiology are partly different. Further studies are required to investigate the difference.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The authors are very grateful to Professor Je G. Chi, who passed away last winter (November 26, 2014). He was a great mentor and friend to all of us. This work is dedicated to his memory.

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2012R1A1A3012668), and by the Korean Health Technology R&D Project, Ministry of Health & Welfare (HI1200024 (A120035)), Republic of Korea.

REFERENCES

Institute has played a pivotal role in the advancement of human embryos.

demonstrated the gene profile of developing tongues in mouse embryos, because the tongue is not a uniform organ with a skeletal framework and its development should be monitored from the early embryonic stage, during which orofacial structures are not fully developed. However, somewhat surprisingly, the determination of exact gestational age during early embryogenesis remains a controversial issue. Based on cumulated experience, Streeter introduced the concept of “developmental horizons” to describe the embryonic stage at different gestational ages. Later, O’Rahilly proposed that Streeter’s “developmental horizons” be modified for convenience, and that “horizon” and the use of Roman numerals be replaced by “stage” and Arabic numerals, respectively. In the present study, we use Streeter’s original classification method as modified by O’Rahilly.

The tongue is innervated by various nerves that subserve muscles, oral mucosa, taste buds, and minor salivary glands. These nerves include the lingual branch of the trigeminal nerve (V), the glossopharyngeal nerve (IX), the chorda tympani branch of the facial nerve (VII), and the hypoglossal nerve (XII), which are distributed to motor components of innervated muscles. In a previous study, we described the sequential prenatal development of the human maxilla, cranial base, and mandible. In addition, we published a book titled "Atlas of Human Embryo and Embryology." However, somewhat surprisingly, the determination of exact gestational age during early embryogenesis remains a controversial issue. Based on cumulated experience, Streeter introduced the concept of “developmental horizons” to describe the embryonic stage at different gestational ages. Later, O’Rahilly proposed that Streeter’s “developmental horizons” be modified for convenience, and that “horizon” and the use of Roman numerals be replaced by “stage” and Arabic numerals, respectively. In the present study, we use Streeter’s original classification method as modified by O’Rahilly.

The tongue is innervated by various nerves that subserve muscles, oral mucosa, taste buds, and minor salivary glands. These nerves include the lingual branch of the trigeminal nerve (V), the glossopharyngeal nerve (IX), the chorda tympani branch of the facial nerve (VII), and the hypoglossal nerve (XII), which are distributed to motor components of innervated muscles. In a previous study, we described the sequential prenatal development of the human maxilla, cranial base, and mandible. In addition, we published a book titled "Atlas of Human Embryo and Embryology." However, somewhat surprisingly, the determination of exact gestational age during early embryogenesis remains a controversial issue. Based on cumulated experience, Streeter introduced the concept of “developmental horizons” to describe the embryonic stage at different gestational ages. Later, O’Rahilly proposed that Streeter’s “developmental horizons” be modified for convenience, and that “horizon” and the use of Roman numerals be replaced by “stage” and Arabic numerals, respectively. In the present study, we use Streeter’s original classification method as modified by O’Rahilly.

The tongue is innervated by various nerves that subserve muscles, oral mucosa, taste buds, and minor salivary glands. These nerves include the lingual branch of the trigeminal nerve (V), the glossopharyngeal nerve (IX), the chorda tympani branch of the facial nerve (VII), and the hypoglossal nerve (XII), which are distributed to motor components of innervated muscles. In a previous study, we described the sequential prenatal development of the human maxilla, cranial base, and mandible. In addition, we published a book titled "Atlas of Human Embryo and Embryology." However, somewhat surprisingly, the determination of exact gestational age during early embryogenesis remains a controversial issue. Based on cumulated experience, Streeter introduced the concept of “developmental horizons” to describe the embryonic stage at different gestational ages. Later, O’Rahilly proposed that Streeter’s “developmental horizons” be modified for convenience, and that “horizon” and the use of Roman numerals be replaced by “stage” and Arabic numerals, respectively. In the present study, we use Streeter’s original classification method as modified by O’Rahilly.

The tongue is innervated by various nerves that subserve muscles, oral mucosa, taste buds, and minor salivary glands. These nerves include the lingual branch of the trigeminal nerve (V), the glossopharyngeal nerve (IX), the chorda tympani branch of the facial nerve (VII), and the hypoglossal nerve (XII), which are distributed to motor components of innervated muscles. In a previous study, we described the sequential prenatal development of the human maxilla, cranial base, and mandible. In addition, we published a book titled "Atlas of Human Embryo and Embryology." However, somewhat surprisingly, the determination of exact gestational age during early embryogenesis remains a controversial issue. Based on cumulated experience, Streeter introduced the concept of “developmental horizons” to describe the embryonic stage at different gestational ages. Later, O’Rahilly proposed that Streeter’s “developmental horizons” be modified for convenience, and that “horizon” and the use of Roman numerals be replaced by “stage” and Arabic numerals, respectively. In the present study, we use Streeter’s original classification method as modified by O’Rahilly.
In order to elucidate the developmental role of the tongue, we showed no anterior-posterior craniofacial skeletal disharmony. Given the background described above, this study was undertaken to determine whether tongue development is closely related to the development of maxillofacial structures. To achieve this, we performed histological analyses on tongues and adjacent tissues from the early to the late embryonic stage. The preliminary study of human tongue development and growth was reported in 1990, and this study reevaluated previous data for anatomical and dimensional changes of oral and craniofacial structures. Prenatal tongue growth was investigated by measuring the anterior cranial base (ACB) to posterior cranial base (PCB) angle (the so-called saddle angle), the ACB to maxillary plane angle, the tongue axis to PCB angle, and the tongue axis to maxillary plane angle. In addition, these angular measurements were compared with adult values obtained from cephalometric X-ray views.

MATERIALS AND METHODS

For the embryo study, serial sections were prepared from 56 embryos between FA 4 and 8 weeks filed in the Embryonal Serial Section Registry (ESR). For the fetus study, 106 normal Korean fetuses filed in the Registry of Congenital Malformation (RCM) and Children’s Hospital for Autopsy (CHA) registry of Seoul National University Hospital (SNUH) were used. These fetuses were confirmed to be normal by complete autopsy, and their ages ranged between gestational age 10 and 41 weeks (Tables 1, 2). Human embryos and fetuses were used after obtaining consent from the Human Organ and Material Committee of SNUH.

Specimens were fixed in 10% neutral formalin and then paraffin-embedded. Sagittal serial sections of a thickness 4 to 6 μm were prepared. When making these sections, head-and-neck size was considered; in smaller cases, the head and neck were serially sectioned, including the tongue, but in larger cases, the tongue was totally extracted from the oral cavity with surrounding structures and sectioned longitudinally at 4 to 6 μm. For light microscopy, specimens were stained with hematoxylin and eosin.

For the analysis of normal adult cephalograms, we selected 30 representative cephalograms of normal subjects that visited Han Bit Clinic in Daejeon city for orthodontic counseling or treatment. All subjects had a normal craniofacial profile and showed no anterior-posterior craniofacial skeletal disharmony. In order to elucidate the developmental role of the tongue, we analyzed tongue positions relative to the facial and cranial base structures. In sagittal sections of microscopic specimens, four developmental planes were traced (1) the ACB plane (from the center of the hypophyseal fossa to the most inferior):

Table 1. Human embryos used in this study

<table>
<thead>
<tr>
<th>Embryonal age (day)</th>
<th>Streeter’s stage</th>
<th>No. of ESR or RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>28–30</td>
<td>13</td>
<td>5 (E49, E77, E83, E95, E176)</td>
</tr>
<tr>
<td>31–32</td>
<td>14</td>
<td>4 (E9, E27, E89, E94)</td>
</tr>
<tr>
<td>33–36</td>
<td>15</td>
<td>8 (E55, E45, E48, E82, E93, E113, E142, E180)</td>
</tr>
<tr>
<td>37–40</td>
<td>16</td>
<td>4 (E59, E61, E68, E183)</td>
</tr>
<tr>
<td>41–43</td>
<td>17</td>
<td>9 (E1, E8, E26, E30, E35, E37, E63, E72, E108)</td>
</tr>
<tr>
<td>44–46</td>
<td>18</td>
<td>3 (E12, E24, E168)</td>
</tr>
<tr>
<td>47–48</td>
<td>19</td>
<td>2 (E13, E48)</td>
</tr>
<tr>
<td>49–51</td>
<td>20</td>
<td>6 (E4, E18, E28, E31, E43, E92)</td>
</tr>
<tr>
<td>52–53</td>
<td>21</td>
<td>3 (E17, E67, E70)</td>
</tr>
<tr>
<td>54–55</td>
<td>22</td>
<td>4 (E25, E95, E96, R448)</td>
</tr>
<tr>
<td>≥56</td>
<td>23</td>
<td>8 (E2, E6, E58, E80, E84, E87, E96, E140)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Table 2. Human fetuses used in this study

<table>
<thead>
<tr>
<th>Gestational age (wk)</th>
<th>No. of ESR, RCM, or CHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4 (E11, E41, E81, E156)</td>
</tr>
<tr>
<td>11</td>
<td>3 (E111, R1057, R1532)</td>
</tr>
<tr>
<td>12</td>
<td>1 (E123)</td>
</tr>
<tr>
<td>13–14</td>
<td>3 (E50, E98, R1529)</td>
</tr>
<tr>
<td>15–16</td>
<td>3 (R308, R1526, R1533)</td>
</tr>
<tr>
<td>17–18</td>
<td>1 (R1524)</td>
</tr>
<tr>
<td>19–20</td>
<td>7 (R291, R293, R379, R398, R414, R567, A89-2)</td>
</tr>
<tr>
<td>21–22</td>
<td>6 (R239, R326, R422, R738, R1419, A89-54)</td>
</tr>
<tr>
<td>23–24</td>
<td>12 (R247, R428, R263, R285, R301, R318, R352, R353, R437, R727, R733, R738)</td>
</tr>
<tr>
<td>25–26</td>
<td>8 (R281, R284, R287, R300, R399, R403, R737, R1483)</td>
</tr>
<tr>
<td>27–28</td>
<td>11 (R249, R250, R253, R267, R270, R375, R406, R438, R506, R739, R1535)</td>
</tr>
<tr>
<td>29–30</td>
<td>9 (R259, R309, R316, R439, R388, R390, R403, R1429, R507)</td>
</tr>
<tr>
<td>31–32</td>
<td>9 (R252, R297, R303, R311, R358, R362, R382, R424, R451)</td>
</tr>
<tr>
<td>33–34</td>
<td>6 (R266, R289, R366, R407, R416, A80-34)</td>
</tr>
<tr>
<td>35–36</td>
<td>4 (R355, R402, R1480, A80-20)</td>
</tr>
<tr>
<td>39–40</td>
<td>6 (R294, R295, R319, R356, R370, R408)</td>
</tr>
<tr>
<td>≥41</td>
<td>4 (R423, A87-87, A88-72, A87-94)</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
</tr>
</tbody>
</table>

E (ESR), Embryonal Serial Section Registry of Seoul National University Hospital (SNUH); R (RCM), Registry of Congenital Malformation at the SNUH.
and anterior point of the premaxilla), and (4) the tongue axis (from the foramen cecum of the tongue to the tongue apex). On adult cephalometric X-ray films, these respectively constitute the ACB plane (nasion-sella turcica), the PCB plane (sella turcica-ca-articulare), the maxillary plane (sella turcica to point A), and the tongue axis (foramen cecum of the tongue to the tongue apex). In order to analyze the role played by the tongue in embryogenesis, we measured the angles made by these planes in sagittal sections of histologic specimens and on cephalometric X-ray films.

During embryogenesis, tongue growth and development were prominent between FA 28 and 56 days (Streeter’s stages, 13 and 23), and thus, we used a grading system for morphogenesis of the tongue described in the literature,6,7,30-33 which classifies tongue development (TD) into eight stages (Table 3).

In TD stage 1 (score 1), tongue primordium aggregates on the medial mandible and bulges on the posterior side of the stomodeum while compressing Rathke’s pouch. During this stage, tongue primordium is visualized as a mesial swelling, which forms the tuberculum impar. However, at this stage it is not well demarcated from the first branchial arch.

In TD stage 2 (score 2), the hypoglossal nerve (XII) is distributed into the tongue primordium. As a result, the hypoglossal nerve fibers are observed as thick bundles. The tongue apex is proliferative and bulges to the lateral side to form the central lingual septum. Subsequently, the tongue primordium produces a pair of lateral swellings. The tongue gradually compresses the nasopharynx and grows both superiorly and anteriorly to fill the superior and posterior stomodal spaces underneath the PCB. Simultaneously, the posterior 1/3 of the tongue and the copula bulge eventually influence formation of the posterior curvature of the PCB. As a result, the apex of the tongue is located at the anterior region of the PCB, i.e., around Rathke’s pouch.

In TD stage 3 (score 3), the tongue grows continuously and its apex is located vertical to the posterior region of the nasal cavity. At this time, the dorsal surface of the tongue fills the nasopharynx. While the olfactory placode continues to grow actively and communicates with the posterior nasal cavity, the apex of the tongue is located within the posterior nasal cavity and subsequently attaches to the orifice of the olfactory placode. Meanwhile, extrinsic tongue muscle is rapidly rearranged by myoblast differentiation to create the hyoglossus, genioglossus, and styloglossus muscle groups. In addition, proliferation of the hypoglossal nerve advanced to the distribution of the lingual nerve to the lateral sides of the tongue.

In TD stage 4 (score 4), the tongue changes from a vertical to a horizontal position. Arranged in an orderly concentric manner, the genioglossus muscle is attached to Meckel’s cartilage of the mandibular arch and then closely connects with the tongue. Extrinsic tongue muscle fibers of the genioglossus and hyoglossus muscles become thickened but show no cross-striation. The apex remains located at the posterior side of the nasal cavity, and the palatal shelf rapidly proliferates and progresses to the lateral side of the tongue.

In TD stage 5 (score 5), the tongue is positioned horizontally within the oral cavity. The mandibular arch grows in the anterior and inferior directions, and the genioglossus muscle attached to Meckel’s cartilage pulls the tongue both anteriorly and inferiorly in order to position the tongue horizontally in the oral cavity. At this time, most palatal shelves proliferate rapidly with mesenchymal swelling to cover the dorsal surface of the tongue, which results in closure of the secondary palate. The extrinsic

<table>
<thead>
<tr>
<th>TD stage</th>
<th>Characteristic findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 1 (TD stage 1)</td>
<td>Mesial swelling of tongue primordium: tuberculum impar formation, concentration of mesenchymal cells.</td>
</tr>
<tr>
<td>Score 2 (TD stage 2)</td>
<td>Lateral swelling of tongue primordium and vertically occupation of the entire stomodeal space. It was elongated into the nasopharyngeal area, which was innervated by the hypoglossal nerve. The copula was formed from a second mesial swelling at the posterior tongue.</td>
</tr>
<tr>
<td>Score 3 (TD stage 3)</td>
<td>Vertical positioning of tongue: involving occupation of the posterior nasopharyngeal space, development of the hypoglossal nerve and tongue muscle, and rapid growth of the olfactory placode to form the naso-pharyngeal passage.</td>
</tr>
<tr>
<td>Score 4 (TD stage 4)</td>
<td>Transitional stage of the tongue from a vertical to a horizontal position. During this stage, genioglossus muscle was attached tightly in a radiating fashion on Meckel’s cartilage.</td>
</tr>
<tr>
<td>Score 5 (TD stage 5)</td>
<td>Horizontal positioning of the tongue: as the mandible grew inferior-anteriorly the tongue was pulled by thick genioglossus muscle inferior-anteriorly. The vertical surface of the tongue was parallel to the palatal shelf.</td>
</tr>
<tr>
<td>Score 6 (TD stage 6)</td>
<td>Protrusion of the tongue on the horizontal plane: indentation by both alveolar ridges at the anterior tongue; cross-striation began to appear in extrinsic tongue muscle.</td>
</tr>
<tr>
<td>Score 7 (TD stage 7)</td>
<td>Differentiation of tongue muscle: intrinsic tongue muscle developed well and extrinsic tongue muscles were in the state of equilibrium with each other. However, many myoblasts were observed between mature striated muscles.</td>
</tr>
<tr>
<td>Score 8 (TD stage 8)</td>
<td>Maturation of tongue muscle: muscle bundles were thickened with prominent cross-striation; few immature myoblasts were observed.</td>
</tr>
</tbody>
</table>

TD, tongue development.
tongue muscles become prominent; that is, the genioglossus muscle develops extensively in the anterior and posterior regions in a concentric manner, and the hyoglossus and styloglossus muscles thicken.

In TD stage 6 (score 6), the tongue protrudes to the anterior region of the oral cavity and attaches to the palatal side of the premaxilla while vertical to the palatal plane within the oral cavity. During forward and backward movement of the tongue, the anterior tongue is indented by intimate attachment to the upper and lower lips. In addition, primitive maxillary and mandibular swellings become dominant in the space between the tongue and the upper and lower lips.

In TD stage 7 (score 7), the cells forming tongue muscles are actively differentiated into intrinsic and extrinsic muscles. In particular, the alignments of extrinsic tongue muscles such as the hyoglossus, genioglossus, and geniohyoid muscles become distinct. The pulling of these muscles anteriorly and posteriorly proportionally positions the tongue within the oral cavity. Furthermore, tongue muscles begin to show cross-striation.

In TD stage 8 (score 8), tongue muscles undergo maturation. Muscle fibers become enlarged with conspicuous cross-striation, and the muscles are closely arranged. Due to forward tongue movement, the anterior tongue shows an indentation formed by the upper and lower lips and maxillary and mandibular arches.

RESULTS

Evaluation of prenatal human TD stages

TD was observed with serial sections of human embryos and in representative sections of fetal tongues and estimated by the 8 TD stages (8 scores) described above and in Tables 3 and 4.

TD stage 1: Mesial swelling of tongue primordium in the stomodeal cavity

From Streeter’s stage 13 (FA, 28 to 30 days), primitive branchial arches were observed around the cervix and became prominent through Streeter’s stage 14–15 (FA, 31 to 36 days). These branchial arches were covered with a thin layer of epithelial cells with a mesenchymal cell core (Fig. 1A, B). In Streeter’s stage 15 (FA, 33 to 36 days) the first branchial arch swelled dominantly and became the largest and was demarcated from surrounding tissues. The first branchial arch formed the lower face and gradually bulged. Blood vessels actively proliferated within the first branchial arch, and subsequently, the second, third, fourth, and fifth branchial arches gradually and sequentially bulged. In addition, blood vessel proliferation was observed within these arches. Finally, the cervix was partly outlined.

The tongue primordium was observed on the medial side of the first and second branchial arches, which were arch-shaped from Streeter’s stage 13, and primitive mesenchymal cells of the primordium migrated from the inferior to the superior. At this time, the first mesial swelling of the tongue, the tuberculum impar, was seen in the oral cavity. Posteriorly to the mesial swelling, infiltration and proliferation of the thyroid primordium were also noted (Fig. 2A). In Streeter’s stage 14 (FA, 31 to 32 days), the second and third mesial tongue swellings were clearly seen posterior to the first mesial swelling; these were destined to differentiate into copula (or hypobranchial eminence) and epiglottal swelling, respectively (Fig. 1C).

From Streeter’s stage 15 (FA, 33 to 36 days) mesenchymal cells of branchial arches actively migrated distally to differentiate in a uniform direction. Migrating from the occipital myotome to the oral cavity, most of the distally extended mesenchyme of the tongue primordium differentiated into extrinsic tongue muscles. At this time, the mandibular primordium was

Table 4. Developmental scores of human tongue during prenatal period

| Prenatal period | No. of cases | Score average
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Streeter’s stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>2.0</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>4.0</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>4.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Weeks (GA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>5.3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>6.3</td>
</tr>
<tr>
<td>Months (GA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>7.2</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>7.7</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>7.9</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>8.0</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>8.0</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

GA, gestational age.

*The developmental score of human tongue is based on the tongue development stages.
located more posteriorly than the cranial region. Accordingly, mesial swelling of the tongue protruded superiorly from the posterior oral cavity and compressed the inferior portion of Rathke’s pouch. The tongue continuously proliferated towards the sphen-occipital synchondrosis, which corresponded to pre-chordal mesenchyme in the superior to posterior portions of the oral stomodeum (Figs. 1A–D, 2A, 2B). TD stage 1 corresponds to Streeter’s stages 13–15 (FA, 28 to 36 days).

Fig. 1. Organogenesis of a fetal tongue. Photographs of mid-sagittal sections of an embryonic human tongue. (A, B) Tongue development (TD) stage 1. Co, copula; Ce, foramen cecum. (C) TD stage 1. (D) TD stage 2. (E) TD stage 3. (F) TD stage 4. (G) TD stage 5. MC, Meckel’s cartilage; Md, mandible. (K) TD stage 6. (L) TD stage 7. Microscopic features of tongue muscle at TD stage 3 (M), TD stage 6 (N), and TD stage 7 (O).
TD stage 2: Lateral swelling of tongue primordium and its vertical occupation of the whole stomodeal cavity

At Streeter's stage 16 (FA, 37 to 40 days), the mandibular primordium of the first branchial arch differentiated into Meckel’s cartilage, and Reichert’s cartilage was formed within the second branchial arch. A mesial swelling was differentiated into a pair of lateral swellings both anteriorly and superiorly on bilateral sides (Fig. 2B). Continuously protruding both anteriorly

Fig. 2. Sequential tongue development (TD) stages during the early embryonic period aligned with anterior cranial base (ACB) and posterior cranial base (PCB) lines. (A) TD stage 1. (B) TD stage 2. (C–E) TD stage 3. (F) TD stage 4. (G, H) TD stage 5. (I) TD stage 6.
and superiorly and then indistinguishably from mesial swelling, the lateral swelling was separated bilaterally by the lingual septum (Fig. 1D). In Streeter's stage 17 (FA, 41 to 43 days), copula swelling (hypobranchial eminence) became distinct. This lateral swelling filled the posterior curvature of the pharynx and then proliferated both anteriorly and superiorly (Fig. 1E). Subsequently, the primitive stomodeal cavity was wholly occupied by the proliferating and protruding tongue (Figs. 1E, 1F, 2C, 2D). The TD stage 2 corresponds with Streeter's stages 16–17 (FA, 37 to 43 days).

TD stage 3: Vertical position of the tongue and its occupation of nasopharyngeal space

From Streeter's stage 18 (FA, 44 to 46 days), the tongue mesenchyme proliferated and was filled with undifferentiated myoblasts (Fig. 1M). The genioglossus muscle was arranged between the tongue and hyoid cartilage, the genioglossus muscle was arranged between the tongue center and Meckel's cartilage, and the styloglossus muscle was between the tongue center and the temporal portion of the cranial base. At this time, the mandible was located more posteriorly and was smaller than the maxilla. Accordingly, the tongue protruded vertically and expanded the posterior stomodeal space for nasopharyngeal development (Figs. 1F, 2C). In Streeter's stage 19 (FA, 47 to 48 days), as the mandible grew anteriorly and inferiorly, the tongue was pulled slightly downward and forward by the anterior portion of the genioglossus muscle (Fig. 2D). The nasal plate actively proliferated and then communicated with the posterior nasal cavity. The apex of the tongue moved to communicate between the nasal plate and the posterior nasal cavity and began to curve anteriorly, although the tongue body was still located at the proximal site (Fig. 1G). However, in Streeter's stage 20 (FA, 49 to 51 days), the tongue was widely distended superiorly, anteriorly, and inferiorly (Fig. 2E). TD stage 3 corresponds to Streeter's stages 18–20 (FA, 44 to 51 days).

TD stage 4: Transitional stage from a vertical to horizontal tongue position

In Streeter's stage 21 (FA, 52 to 53 days) the tongue protruded and elongated within the oral cavity (Fig. 2F). The mandible was still located more posteriorly than the maxilla. While Meckel's cartilage enlarged, mandible growth was initiated on the lateral side of Meckel's cartilage and then progressed anteriorly and inferiorly. Fibers of the genioglossus muscle become distinct and tracked the tongue to attach to the perichondral mesenchymal tissue of Meckel's cartilage. This process lowered the tongue both anteriorly and inferiorly as illustrated in Fig. 3. A huge empty space appeared for the nasopharyngeal structure in the posterior stomodeal cavity (Fig. 1H). In Streeter's stage 22 (FA, 54 to 55 days), the extrinsic tongue muscles appeared much more mature, and the genioglossus muscle fibers previously attached to Meckel’s cartilage migrated anteriorly to the posterior side of the mandible (Fig. 1N). Accordingly, the arrangement of the genioglossus muscle fibers attached to the tongue center became concentric and distinct. Moreover, the arrangement of hyoglossus muscle cells became distinct and hyoglossus muscle fibers actively proliferated. At this time, the genioglossus muscle pulls the tongue both anteriorly and inferiorly. As a result, the tongue was rapidly lowered in the same direction and located in transition between the vertical and horizontal positions (Figs. 1I, 2G). TD stage 4 corresponds to Streeter's stages 21–22 (FA, 52 to 55 days).

TD stage 5: Horizontal positioning of the tongue in the oral cavity

In Streeter's stage 23 (FA, 56 days), the tongue was lowered both anteriorly and inferiorly and located on the horizontal
plane. However, the mandible was still shifted slightly posterior to the maxilla. Accordingly, the tongue apex was attached to incisive papilla of the premaxilla. In addition, the lower lip was seen within the oral cavity. The palatal shelf rapidly proliferated and gradually closed as the nasal septum grew downward to result in nasal cavity formation (Fig. 2G). Tongue muscle cells were arranged in a relatively harmonious manner; the genioglossus, hyoglossus, styloglossus, and geniohyoid muscles were clearly distinguishable. Nevertheless, no cross-striation was observed in these muscles at this stage. In particular, genioglossus muscle growth became prominent both anteriorly and posteriorly, and the arrangement of the posterior genioglossus muscle fibers, which track the tongue both anteriorly and inferiorly, became notable in the center of the tongue (Fig. 1I). Subsequently, a large space for the nasopharynx was generated (Fig. 2G). At the same time, the spheno-occipital synchondrosis became active and enlarged, producing an anteroposterior cranial base angle, which eventually formed the roof of the nasopharynx.

At gestational age (GA) 10 weeks, growth of the nasal capsule gradually progressed. Accordingly, the nasal septum was inferiorly enlarged. The anterior part of the nasal septum fused with the premaxilla to form the primary palate. Meanwhile, the posterior part of the nasal septum grew progressively. The lowered palatal shelf migrated from the posterior part to the dorsal side of tongue and was positioned horizontally (Figs. 1J, 2H). Subsequently, the palatal shelf rapidly enlarged and formed the secondary palate by fusing with the nasal septum, which was inferiorly growing from the prechordal mesoderm. TD stage 5 corresponds to Streeter’s stage 23 (FA, 56 days; GA, 10 weeks).

TD stage 6: Protrusion of the tongue in the horizontal plane

At approximately GA 11 weeks, mandibular growth was more advanced than maxillary growth, resulting in the two being at almost the same level. As the tongue was located in the horizontal plane, its forward movement gradually progressed (Fig. 2I). The tongue apex was attached to incisive papilla of the premaxilla. Growth of the mandible became prominent and the mandible body was enlarged on the lateral side of Meckel’s cartilage, from which it gradually separated. The growth of mandibular bony trabeculae progressed laterally (Fig. 1K). Insertions of digastric and mylohyoid muscles were completely changed from Meckel’s cartilage to the mandible. The lower lip was located posterior to the upper lip and closely associated with the tongue apex, causing an indentation in the anterior tongue. On the other hand, the nasal septum continued to proliferate inferiorly. Meanwhile, the nasal septum was involved in the formation of the vomer, a plate-like structure posterior to its anterior part, and subsequently associated with the formation of the hard palate by fusing with the palatal shelf. Moreover, the posterior extended tissue of the palatal shelf formed the soft palate as it fused with the nasal septum without any communications. Finally, the soft palate covered the anteriorly located tongue root. TD stage 6 corresponds to GA 11 weeks.

TD stage 7: Differentiation of tongue muscle cells

At around GA 3 months, when facial muscles are not well-developed, the genioglossus and hyoglossus muscles were found to exhibit bundle-like arrangements of muscle fibers with conspicuous cross-striation (Fig. 1O). In the tongue, the hyoglossus, genioglossus, styloglossus, and glossopalatinus muscles are classified as extrinsic muscles; at the hyoid bone, mandible, and cranial base, they are classified as the geniohyoid, mylohyoid, and stylohyoid muscles, respectively (Fig. 1L). At approximately GA 4 months, the tongue muscles were well developed and subsequently enlarged. Intrinsic tongue muscles were not well developed until approximately GA 5 months. TD stage 7 corresponds to GA 3–5 months.

TD stage 8: Maturation of tongue muscle

After GA 6 months, tongue muscle growth became prominent, muscle fibers were enlarged, and cross-striation was clearly observed. The fascicles of the extrinsic tongue muscles were tightly connected, and the development of intrinsic muscles became prominent. Thus, they were distinguishable from extrinsic muscles. At approximately GA 8 months, tongue muscle maturation was almost complete. At this time, cross-striation was clearly observed and muscular fascicles became thicker with few undifferentiated myoblasts (Fig. 1O). TD stage 8 corresponds to the period from GA 6 months.

Formation of the lingual frenum

In Streeter’s stage 19, the tongue was superiorly directed to the nasal cavity, and in Streeter’s stage 23, it was anteriorly tracked by mandible growth and the genioglossus muscle. At this time, mucosa located anterior to the genioglossus muscle was much extended, and a thin membranous structure was formed on the ventral surface (termed the lingual frenum) (Fig. 4A, B). Until GA 10 weeks, the lingual frenum was covered with thin oral mucosal epithelium, and it contained only a small amount of connective tissue and subsequently fused to the lingual septum (Fig. 4C). The tongue apex migrated both anteriorly and inferiorly after GA 11 weeks. At approximately GA 12 weeks, mus-
cle fibers of the external tongue muscles were more matured, and at this stage, the tongue performed forward and backward movements in the horizontal plane. The membranous lingual frenum became the anterior margin that supported forward and backward movements of the tongue (Fig. 4).

Fig. 4. Formation of the lingual frenum in human embryos. (A) Mid-sagittal section of the human tongue at tongue development (TD) stage 4, the vertical line indicates the frontal section planes for panel B. (B) Frontal section of human embryo at TD stage 4, indicating the membranous covering of the lingual frenum (arrows). (C) Frontal section of a human embryo at TD stage 5, showing the close connection between the lingual frenum and lingual septum (LS). GA, gestational age.

Fig. 5. (A–D) Incremental change graphs of the four developmental angles (Table 5); anterior cranial base (ACB) to posterior cranial base (PCB) angle, ACB–maxillary plane angle, PCB–tongue axis angle, and maxillary plane–tongue axis angle.

Relations between the cranial base and facial structures

ACB plane to PCB plane angle (Saddle angle)

The angle between the ACB and PCB planes constitutes a basic craniofacial structure and was almost flat (180°) in Street-
er’s stage 13 before the tongue pressed the cranial base (Fig. 2A). The tongue migrated from the occipital myotome to the stomodeal cavity and pressed the hypophyseal fossa area to form this angle, which reduced in accordance with FA. In Streeter’s stage 17, this angle was about 160°, and in Streeter’s stage 19 it reduced from 120° to 130° to reach 124° to 126° in Streeter’s stage 23. We observed that this value was maintained at FA 21 weeks in histological sections and was similar in adult cephalograms. The mean saddle angle obtained by the cephalogram tracing of 30 normal adults was 116° to 131° with a mean of 124.8°, which is comparable to other reports that the saddle angle of normal adult men and women are 124° ± 5° and 126° ± 5°, respectively. Therefore, we presume that this saddle angle almost matures during the early prenatal period (at FA 8 weeks) due to compression by the emerging tongue (Fig. 5A).

ACB plane to maxillary plane angle

The ACB to maxillary plane angle represents facial clockwise growth. It was almost rudimentary at FA 4–5 weeks, but as the premaxilla grew downward from late during the fifth FA week, the ACB to maxillary plane angle increased to 32° to 52°. This angulation was conspicuously observed in the mid-sagittal sections of embryos and early fetuses until GA 12 weeks. However, in the cephalograms of 30 normal adults, the ACB plane to maxillary plane angle averaged 40.5° to 51.5° (Fig. 5B).

Tongue axis to PCB angle

The tongue axis to PCB angle is an important factor of facial counter-clockwise growth; it was almost negative when the tongue emerged at FA 4–5 weeks, but thereafter as the tongue protruded forward, this angle gradually became positive and increased to 47° at FA 8 weeks. The tongue axis and PCB angle were relatively stable at 45° at GA 12 weeks and remained almost constant until GA 21 weeks. In the cephalograms of 30 normal adults, the tongue axis to PCB plane angle ranged from 42° to 72.5° with an average value of 58.3° (Fig. 5C).

Tongue axis to maxillary plane angle

Angulation between the tongue axis and the maxillary plane was observed from FA 5 weeks at 110°. As the tongue grew forward and downward and the tip of the tongue gradually fixed to the premaxilla, the tongue axis to maxillary plane angle became approximately 48° from the FA 8 weeks and then remained constant until GA 21 weeks. In the cephalograms of 30 normal adults, the tongue axis to maxillary plane angle ranged from 32.5° to 53.5° with an average value of 43.7° (Fig. 5D). Relations between the tongue and craniofacial structures are summarized in Table 5.

DISCUSSION

According to Moore (1982),14 the tongue primordium bulges late during the fourth FA week, and one mesial swelling and two lateral swellings proliferate while the tongue protrudes into the oral cavity. In the present study, we investigated the locations of TD with respect to overall maxillofacial structures, and...
we noted that the tongue and mandibular primordium were severely retruded as compared with the maxillary primordium.16,34,35 In particular, the origin of TD was located in the pharyngeal region and proliferation was rapid and resulted in compression of the inferior part of the PCB. This expanded the pharyngeal region and then affected the complete osteogenesis of the cranial base25,28 and secondary palate,34,36-38 in time for the formation of the sphenoid-occipital synchondrosis. Trenouth19,40 examined the fetal growth and development of the maxilla and mandible and found mandibular protrusion is obvious between GA 8 and 10 weeks, and that thereafter, the maxillary protrusion appears while the naso-maxillary segment enlarges. At the same time, the mandible grows anteriorly and inferiorly in harmony with maxillary growth. Diewert14 stressed that chondrocranium and Meckel's cartilage determine the locations of cranial base angulation and maxilla during the late fetal stage when early skeletal structures are formed. Our results showed cranial base angulation is closely associated with lingual swelling and vertical positioning of the tongue.

At approximately FA 8 weeks, mandibular growth, centered by Meckel's cartilage, pulls the tongue downward and forward, while growth of Meckel's cartilage is greatly increased. Our results showed that the tongue is transposed from the vertical to the horizontal axis from FA 7 weeks to the early eighth week (Streeter's stages, 20–23). At this time, the muscle cells forming the tongue muscles are premature. Between GA 10 and 12 weeks, protrusion of the tongue was noted while extrinsic tongue muscles were arranged in a harmonious manner. Furthermore, cells forming extrinsic muscles were progressively differentiated and cross-striation was observed, which suggests that forward and backward movement of tongue was initiated.

Humphrey35,41,42 proposed that opening and closing movements are caused by masseter and temporal muscle reflexes at approximately GA 12 weeks and suggested that prompt mandibular growth in the early embryonic stage is due to the introral appearance of the tongue and to the opening and closing movement. Our results show that TD progressed much faster than maxillofacial structural growth. To determine whether the developing tongue is associated with its adjacent branchial arches, we performed a histologic analysis to examine nerve distributions in serial sections. This analysis revealed that tongue muscles were closely related to masticatory and facial muscles and indicated that the earlier maturations of tongue muscles rather than facial musculature substantially affected the growth and development of maxillofacial structures. The present study demonstrates that the embryonic tongue originates from the occipital myotome, actively migrates into the stomodeal cavity through the retrohyoid space, and gradually swells beneath the primordial mesenchyme of the cranial base to form the angulation between the ACB and PCB. Furthermore, this angulation occurred rapidly, and the swollen tongue was directed perpendicularly to the angulation point. Subsequently, Rathke's pouch invaginated into the center of the sphenoid body, and thus, we propose that the swelling of embryonic tongue is related to angulation of ACB and PCB and to the formation of Rathke's pouch. In addition, we confirmed that the ACB-PCB angle matured at FA 8 weeks and then remained almost constant until full term and during postnatal life.

It has been reported that the developing tongue adjusts to functional changes during the postnatal stage.43 In patients with acromegaly, mandibular prognathism is rarely accompanied by a change in tongue size, but tongue size is greatly reduced in Beckwith-Wiedemann syndrome.44-46 However, in Down syndrome, muscular dystrophy is accompanied by tongue enlargement,47 which could compress the pharynx and lead to mandibular prognathism.48 Furthermore, it is well known that tongue enlargement occurs rapidly in Down syndrome patients who have a reduced number of teeth.49 Our results showed that TD affects the development of maxillofacial structures such as the maxilla, mandible, nasal cavity, pharynx, and larynx, either directly or indirectly. Because TD is one of the earliest events that progresses through the fetal stage, it can be inferred that the developmental rate of maxillofacial structures should be evaluated with reference to TD. As noted above, in the early embryonic stage, the tongue grows while it fills the pharynx, protrudes upward, and compresses the cranial base.

TD cannot be easily explained by its associations with other maxillofacial structures because its development involves its migration from the occipital myotome, which is unlike that of prechordal mesoderm or branchial arches of the cervix that form maxillofacial structures.50 In addition, the tongue is innervated by major cranial nerves. The lingual branch of the trigeminal nerve (V) is distributed in mucosa at the tongue anterior, the chorda tympani branch of the facial nerve (VII) is distributed among taste buds in the anterior region, the glossopharyngeal nerve (IX) distributes to mucosa in the posterior region, branches of the vagus nerve (X) are distributed in laryngeal constrictor muscle, and the hypoglossal nerve (XII) is distributed as a motor component in the skeletal muscles constituting tongue tissues.51 From early embryogenesis, the tongue is imbued with a wide variety of innervated cells, and thus, TD is influenced by the regulation of interactive functional reflexes.
and this eventually affects the growth and development of maxillofacial structures.

In the present study, we examined lingual frenum formation during the embryonic period and defined the lingual frenum as a structure that supports anterior to posterior movement of the tongue. At the beginning of TD, the lingual frenum is a thin membranous covering of stomodeal mucosa that is gradually connected with the lingual septum centered by intrinsic tongue musculature. Previously, we supposed fibrous thickening of the lingual frenum in postnatal life limits tongue movement and results in ankyloglossia and designed a lingual myoplasty that differed from ordinary frenectomy to reduce the range of tongue movement. However, the present study demonstrates that the lingual frenum is produced as a result of positional changes of the embryonal tongue and that it functions as a reserved space for anterior extension of tongue movement.

In the present study, TD has been described as an 8-stage event involving mesial swelling of the tongue primordium, lateral swelling of the tongue within the oral fossa, vertical protrusion of the tongue, tongue transposition, horizontal location, anterior location, muscle differentiation, and tongue muscle maturation. Importantly, TD precedes that of other maxillofacial structures, and thus, changes in tongue position could be regarded as primary events of maxillofacial growth and development. In addition, because tongue muscles, masticatory muscles, and facial muscles move continually during fetal development, it is likely that the effects of the tongue on other maxillofacial structures continue even after birth. This suggests the tongue is an important organ that plays critical roles in the development of adjacent maxillofacial anomalies.

In summary, TD as observed during the present study indicates that the human tongue develops at an early embryonic age, that is, at approximately Streeter's stage 13 (FA, 28 to 30 days) as an anterior extension of the occipital myotome, which is earlier than that of any other orofacial structure, and that the tongue continues to develop and affects the formation of the cranial base, jaws, and nasopharyngeal structures. In our opinion, the morphogenetic impact of the tongue on craniofacial structures is substantial enough to affect the anatomy and essential functions of oro-facial structures. However, the extents of these changes and the mechanisms involved remain to be elucidated.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
We express our sincere appreciation to the donors of human materials that made it possible to perform this study, which was initiated after obtaining legal approval from the Embryonal Serial Section Registry (ESR), the Registry of Congenital Malformation (RCM), and the Children's Hospital for Autopsy (CHA), Seoul National University Hospital (Seoul). We also express our gratitude to the late Professor Je G. Chi, who founded the ESR, RCM, and CHA. Professor Chi was a mentor and friend to all of the authors. We dedicate this study to his memory.

REFERENCES
10. Aduss H, Pruzansky S. Postnatal craniofacial development in chil-

http://jpatholtm.org/ http://dx.doi.org/10.4132/jptm.2015.09.17

510 • Hong SJ, et al.

Comprehensive Cytomorphologic Analysis of Pulmonary Adenoid Cystic Carcinoma: Comparison to Small Cell Carcinoma and Non-pulmonary Adenoid Cystic Carcinoma

Seokhi Kim · Jinah Chu · Hojoong Kim · Joungho Han

Department of Pathology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea

E-mail: hanjho@skku.edu

Fax: +82-2-3410-0025
Tel: +82-2-3410-2765

Corresponding Author
Joungho Han, MD, PhD
Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Inno-ro, Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-2765
Fax: +82-2-3410-0025
E-mail: hanjho@skku.edu

Background: Cytologic diagnosis of pulmonary adenoid cystic carcinoma (AdCC) is frequently challenging and differential diagnosis with small cell carcinoma is often difficult. Methods: Eleven cytologically diagnosed cases of pulmonary AdCC were collected and reviewed according to fifteen cytomorphologic characteristics: small cell size, cellular uniformity, coarse chromatin, hyperchromasia, distinct nucleolus, frequent nuclear molding, granular cytoplasm, organoid cluster, sheet formation, irregular border of cluster, hyaline globule, hyaline basement membrane material, individual cell necrosis or apoptotic body, and necrotic background. Twenty cases of small cell carcinoma and fifteen cases of non-pulmonary AdCC were also reviewed for the comparison. Results: Statistically significant differences were identified between pulmonary AdCC and small cell carcinoma in fourteen of the fifteen cytomorphologic criteria (differences in sheet formation were not statistically significant). Cellular uniformity, distinct nucleolus, granular cytoplasm, distinct cell border, organoid cluster, hyaline globule, and hyaline basement membrane material were characteristic features of AdCC. Frequent nuclear molding, individual cell necrosis, and necrotic background were almost exclusively identified in small cell carcinoma. Although coarse chromatin and irregular cluster border were observed in both, they favored the diagnosis of small cell carcinoma. Hyaline globules were more frequently seen in non-pulmonary AdCC cases. Conclusions: Using the fifteen cytomorphologic criteria described by this study, pulmonary AdCC could be successfully distinguished from small cell carcinoma. Such a comprehensive approach to an individual case is recommended for the cytologic diagnosis of pulmonary AdCC.

Key Words: Carcinoma, adenoid cystic; Lung; Carcinoma, small cell; Cytology

Adenoid cystic carcinoma (AdCC) is rare in the lower respiratory tract (less than 0.2% incidence was reported among the all primary pulmonary tumors).1 3 Using aspiration and exfoliative cytology for diagnosis, less than twenty cases have been reported in the English literature.4 6 Due to its rare incidence, cytopathologic features of pulmonary AdCC have not been collectively described yet.7-11

In salivary glands where AdCC is commonly found, cytologic characteristics of AdCC have been frequently studied and are relatively well-established. Round or ovoid nuclei and indistinct nucleoli are reported as cellular features of the AdCC. The organoid structure formed by tumor cells and hyaline globules are also helpful diagnostic features.12 A Japanese group suggested 17 cellular and architectural features of AdCC for the cytologic diagnosis. According to the report, the AdCC could be distinguished from other salivary gland-type tumors by using the 17 items.13 However, the subtyping of salivary gland-type tumors by fine needle aspiration (FNA) cytology is not simple, and the accuracy has been low compared to the core needle biopsy.14

Additionally, in clinical practice, a sufficient amount of a sample is not always obtained, especially in the lower respiratory tract where the specimen acquisition by bronchoscope is usually difficult. When examining a pulmonary lesion, it is important to distinguish AdCC from other non-salivary gland-type tumors such as small cell carcinoma. Although both can share the similar cytomorphologies, the therapeutic regimens are far different.15 16 There had been a few case reports that pulmonary AdCC was mis-interpreted as small cell carcinoma.6 11

In this study, we analyzed cytomorphologic features of 11 primary and metastatic pulmonary AdCC cases. Cytology of twenty small cell carcinomas and fifteen non-pulmonary AdCCs were also investigated for the points of differential diagnosis.
MATERIALS AND METHODS

Patients and specimen preparation

Among 93 patients who were diagnosed to have pulmonary AdCC in the Samsung Medical Center between September 1995 and June 2015, aspiration or bronchial washing cytology was performed in 36 cases. Tumor cells were identified in 11 cases and the remaining 25 cases were reported to be negative for malignant cells. The 11 cases of primary and metastatic pulmonary AdCC were all histologically confirmed as AdCC by biopsy or resection. Among the 11 AdCC cytology cases, samples for seven cases (64%) were obtained from bronchial washing specimens, and samples for four cases (36%) were acquired by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). Nine of the cases (82%) were obtained from trachea or bronchus samples and the remaining two cases (18%) were obtained from mediastinal lymph nodes by EBUS-TBNA. The computerized record system of Samsung Medical Center identified a total of 466 cases of small cell carcinoma which were diagnosed from cytologic specimens of mediastinal lymph nodes. Twenty cases of small cell carcinoma were randomly selected from 109 recent cases (from July 2013 to June 2015) for the cytologic comparison to pulmonary AdCC. In addition, among 426 primary AdCC cases of non-primary origin in the Samsung Medical Center between September 1995 and June 2015, both cytologic and histologic specimens were available for the review in fifteen patient cases and thus they were chosen for our study. All non-pulmonary AdCC specimens were obtained from the salivary gland or other head and neck region tumors.

Clinicopathologic information—sex, age, smoking history, site of tumor, stage, and progress was investigated by using electronic medical records. Patients were categorized into the smoker or non-smoker group according to their smoking history.17

EBUS-TBNA and bronchial washing of the respiratory tract were performed by pulmonologists using a rigid or flexible bronchoscope. A 22-gauge needle was used in TBNA. The aspirate was smeared onto glass slides, air dried, immediately fixed with 95% alcohol and subsequently stained with hematoxylin and eosin (H&E) and a Papanicolaou solution. Bronchial washing was conducted by injecting saline solution into the bronchial tree and subsequent suctioning. The acquired washing specimen was centrifuged, fixed in a 95% alcohol and stained using H&E and a Papanicolaou solution. FNAs of the salivary gland and head and neck tumors were performed either by radiologists or pathologists using a 22- or 23-gauge needle attached to a 10-mL syringe. Ultrasonographic guidance was used in the cases performed by radiologists.

In cases that subsequent biopsies or surgical resection of the tumor were performed, histologic slides were also collected for the review.

This study was approved by the Institutional Review Board of the Samsung Medical Center (IRB No. 2015-07-154).

Cytopathologic and histopathologic analysis

The cytologic slides were reviewed by three pathologists (J.H., S.K., and J.C.), including a pathologist (J.H.) who has more than 20-year experience of pulmonary pathology and cytopathology. The cases were evaluated according to fifteen cytomorphological features: (1) small cell size, (2) cellular uniformity, (3) coarse chromatin, (4) hyperchromasia, (5) distinct nucleolus, (6) frequent molding, (7) granular cytoplasm, (8) distinct individual cell border, (9) organoid cluster, (10) sheet formation, (11) irregular border of cluster, (12) hyaline globule, (13) hyaline basement membrane material, (14) individual cell necrosis or apoptotic body, and (15) necrotic background. The small cell was defined by the cell size of less than three times the diameter of the background lymphocyte. When the nuclear molding was shown in more than 50% of the entire tumor cell population, it was regarded as the frequent molding. The organoid cluster represented a cylindrical, spherical, fingerform or other distinctive architectural arrangements of tumor cells. The organoid cluster and sheet formation were indicated when more than 10% of the tumor area showed the morphologies. The above 15 features were selected by a comprehensive summary of the literature regarding AdCC and small cell carcinoma.8,12,13,18

The histologic slides of all pulmonary and non-pulmonary AdCC cases were also blindly reviewed.

Immunohistochemistry

Immunohistochemical staining of c-kit was performed to confirm the diagnosis of AdCC. Formalin-fixed, paraffin-embedded tissue samples of biopsied or resected tumors were prepared in 4-μm thickness slices and stained with a rabbit polyclonal antibody (1:50, Dako, Carpinteria, CA, USA).

Statistical analysis

Student’s t tests and Mann-Whitney tests were performed to compare the age and the duration of follow up between the pulmonary AdCC group and the non-pulmonary AdCC cases. The age and the duration of follow up between the pulmonary AdCC group and the small cell carcinoma group, and between the pulmonary AdCC group and the non-pulmonary AdCC group. Whether to use Student’s t test or Mann-Whitney test was decided after testing the normal distribution of data, by
performing a Kolmogorov-Smirnov test and a Shapiro-Wilk test. The chi-square test, Fisher exact test, and linear-by-linear association were performed to analyze the differences in sex distribution, smoking history, stage and progression status in clinicopathologic data and the cytormorphic items. Each test was applied in the appropriate setting. A one-tailed test was used in the case that showed unidirectional tendency. Values were considered statistically significant when the p-value was less than .05. Statistical analyses were performed by using the SPSS ver. 20 (SPSS Inc., Chicago, IL, USA).

RESULTS

Clinicopathologic characteristics of pulmonary AdCC

The clinical and pathological characteristics of the 11 pulmonary AdCC cases are summarized in Table 1. Patients included in the pulmonary AdCC group were six males and five females and the median age was 57 years old. Among the nine patients whose smoking histories were available, five patients were smokers (median, 12.5 pack-years; range, 10 to 30 pack-years). Most of the pulmonary AdCC cases were observed as obstructive masses or narrowing of trachea/bronchus in bronchoscopy. Except for the one case that lacked staging information, stage I, II, III, and IV constituted 20%, 10%, 60%, and 10% of the cases, respectively. In three cases (27%), the tumors had recurred on their original sites. Metastasis was identified in two patients during follow-up (18%).

Only one case (9%) was confirmatively diagnosed as AdCC in the cytologic specimen (case 3). Eight cases (73%) were diagnosed as malignancy or suspicious for malignancy but specific types were not mentioned. The remaining two cases (18%) were diagnosed as the presence of atypical cells.

All cases were confirmed as AdCC by subsequent biopsies and surgical resections. Nine cases (82%) showed a cribriform pattern of growth, whereas the remaining two cases (18%) showed a solid pattern.

Clinical characteristics of small cell carcinoma and non-pulmonary AdCC

Clinical features of the selected small cell carcinoma cases and the non-pulmonary AdCC cases are summarized in Table 2. Among the small cell carcinoma cases, 15 cases (75%) were obtained from N1 mediastinal lymph nodes. Three cases (15%) were acquired from N2 lymph nodes. Eleven patients (55%) were in the limited stage of disease whereas the remaining nine patients (45%) were in the extensive stage. Tumor recurrence was
identified in two patients (10%). The patients’ age at diagnosis was older and the follow-up period was shorter in the patients with small cell carcinoma compared to the patients with pulmonary AdCC. All except one of the small cell carcinoma patients had a smoking history (median, 45 pack-years; range, 30 to 112.5 pack-years).

Non-pulmonary AdCC cases were all obtained by FNA. Twelve cases (80%) were taken from either parotid or submandibular glands. Two cases (13%) were the tumors of external auditory canal. One case (7%) was obtained by FNA of the floor of the mouth. Sex ratio, median age, smoking history (median, 33.75 pack-years; range, 22.5 to 45 pack-years in smoker group), stage, presence of recurrence or metastasis and follow-up period were not statistically different from those of the pulmonary AdCC group.

Comprehensive cytomorphologic comparison among pulmonary AdCC, small cell carcinoma, and non-pulmonary AdCC

The fifteen cytomorphologic criteria described above were evaluated in the pulmonary and the non-pulmonary AdCC and the small cell carcinoma cases (Table 3). Except for sheet formation, all other cytomorphologic criteria showed statistically significant differences between pulmonary AdCC and small cell carcinoma. Although 45% of the pulmonary AdCC cases manifested small cell size, the tumor cells were cytologically uniform and they frequently had distinct nucleoli which were not noted in small cell carcinoma. While six cases (55%) of pulmonary AdCC revealed a coarse chromatin pattern, it was identified in all but one case of small cell carcinoma. Nucleoli were distinct in six cases (55%) of pulmonary AdCC, but all of the small cell carcinoma cases showed indistinct nucleoli. Nuclear molding was occasionally identified in seven out of 10 available pulmonary AdCC cases (70%). However, none exceeded 50% of the entire tumor cell population. In contrast, the extensive nuclear molding was noted in 95% of the small cell carcinoma cases. Many pulmonary AdCC cases had tumor cells with scant cytoplasm and/or naked nuclei similar to small cell carcinoma. However, rigorous microscopic examination revealed granular cytoplasm in the majority of the cases (73%). The cellular border was distinct in the three pulmonary cases (27%), while none of the small cell carcinoma cases showed distinguishable cellular

Table 2. Clinical characteristics of pulmonary adenoid cystic carcinoma, metastatic small cell carcinoma, and non-pulmonary adenoid cystic carcinoma cases

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pulmonary AdCC (n=11)</th>
<th>SC (n=20)</th>
<th>Non-pulmonary AdCC (n=15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6 (55)</td>
<td>18 (90)</td>
<td>6 (40)</td>
<td>.067^ab</td>
</tr>
<tr>
<td>Female</td>
<td>5 (45)</td>
<td>2 (10)</td>
<td>9 (60)</td>
<td>.462^cd</td>
</tr>
<tr>
<td>Median age (range, yr)</td>
<td>57 (42–75)</td>
<td>68 (57–77)</td>
<td>53 (32–76)</td>
<td><.001^aα</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
<td>.168^aα</td>
</tr>
<tr>
<td>Smoker^a</td>
<td>5 (56)^a</td>
<td>19 (95)</td>
<td>2 (14)^a</td>
<td>.022^ab</td>
</tr>
<tr>
<td>Never smoker^b</td>
<td>4 (44)^b</td>
<td>1 (5)</td>
<td>12 (86)^b</td>
<td>.066^ab</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachea: 4 (28)</td>
<td></td>
<td>4 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchus: 5 (48)</td>
<td></td>
<td>5 (48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediastinal LN: 2 (18)</td>
<td></td>
<td>2 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 LN: 15 (75)</td>
<td></td>
<td>15 (75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 LN: 3 (15)</td>
<td></td>
<td>3 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unspecified: 2 (10)</td>
<td></td>
<td>2 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth floor: 1 (7)</td>
<td></td>
<td>1 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td>.667^i</td>
</tr>
<tr>
<td>I: 2 (20)</td>
<td></td>
<td>Limited: 11 (55)</td>
<td>I: 3 (20)</td>
<td></td>
</tr>
<tr>
<td>II: 1 (10)</td>
<td></td>
<td>Extensive: 9 (45)</td>
<td>II: 4 (27)</td>
<td></td>
</tr>
<tr>
<td>III: 6 (60)</td>
<td></td>
<td>III: 1 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV: 1 (10)</td>
<td></td>
<td>IV: 7 (46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence or metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>5 (45)</td>
<td>2 (10)</td>
<td>5 (33)</td>
<td>.067^ab</td>
</tr>
<tr>
<td>Absent</td>
<td>6 (55)</td>
<td>18 (90)</td>
<td>10 (67)</td>
<td>.689^cd</td>
</tr>
<tr>
<td>Median follow up (range, mo)</td>
<td>48 (3–177)</td>
<td>7.5 (1–19)</td>
<td>41 (4–70)</td>
<td>.003^es</td>
</tr>
</tbody>
</table>

Values are presented as number (%) unless otherwise indicated. AdCC, adenoid cystic carcinoma; SC, small cell carcinoma; LN, lymph node; EAC, external auditory canal. ^a-p-value between pulmonary AdCC and small cell carcinoma; ^b-Fisher’s exact test; ^c-p-value between pulmonary AdCC and non-pulmonary AdCC; ^d-Chi-square test; ^e-Student’s t-test; ^f-Smoker group includes ex-smoker (stopped smoking for more than 365 days), habitual smoker (more than 1 tobacco product/day) and occasional smoker (less than 1 tobacco product/day); ^g-Smoking history was not able to obtain in two pulmonary AdCC cases and one non-pulmonary AdCC case; ^h-Never smokers had smoked less than 20 g of tobacco (equivalent to 100 or fewer cigarettes) in lifetime; ^i-Staging information was not available in one pulmonary AdCC case; ^j-Linear by linear association; ^k-Mann-Whitney test.
borders. Regarding the architectural patterns, organoid cluster formation was observed in all of the pulmonary AdCC cases, but two small cell carcinoma cases also revealed vaguely organoid clusters. Whereas the border of cell clusters was irregular in all of the small cell carcinoma cases, regular borders were identified in 56% of the pulmonary AdCC cases. Hyaline globules and hyaline basement membrane materials were exclusively identified in the pulmonary AdCC cases; however, the frequency is lower than expected (36% and 27%, respectively). The single cell necrosis or apoptotic body was not observed in any pulmonary AdCC case. Although the two pulmonary AdCC cases (18%) revealed necrotic background, it was identified in 80% of small cell carcinoma cases (Figs. 1, 2). In summary, cellular uniformity, distinct nucleolus, granular cytoplasm, distinct cell border, organoid cluster, hyaline globule and hyaline basement membrane were revealed as cytologic features of pulmonary AdCC compared to small cell carcinoma. Coarse chromatin, frequent nuclear molding, irregular border of cluster, individual cell necrosis or apoptotic body, and necrotic background could be considered as characteristic cytologic findings of small cell carcinoma.

When comparing pulmonary AdCC to non-pulmonary AdCC cases according to the fifteen cytomorphologic features, small cell size and sheet formation were less frequently observed in the pulmonary AdCC cases. Whereas 80% of the non-pulmonary AdCC cases had hyaline globules, they were only seen in 36% of the pulmonary AdCC cases.

Histopathologic correlation and immunohistochemical confirmation of pulmonary AdCC

The review of biopsy or surgical resection slides of the 11 pulmonary AdCC cases revealed that nine cases had a cribriform growth pattern while two cases showed a solid pattern of growth. Tumors with a solid pattern of growth were confirmed by immunohistochemical staining with c-kit (data not shown). In the non-pulmonary AdCC cases, 11 cases (79%) showed cribriform predominant histology, while the tubular and solid growth patterns were noted in the rest cases (14% and 7%, respectively).

DISCUSSION

Pulmonary AdCC is often difficult to diagnose based on cyto-
logic analysis. Besides the fact that they frequently show similar
cytomorphology, many primary tumors of the lung share com-
mon clinical features. Therefore, differential diagnosis often in-
cludes a variety of malignant tumors such as small cell carcinoma,
carcinoid tumor and poorly differentiated non-small cell carci-
noma. Salivary gland type tumors other than AdCC-pleomorphic
adenoma, myoepithelial adenoma/carcinoma, basal cell adeno-
ma/carcinoma and epithelial-myoepithelial carcinoma should also
be considered.

Small cell carcinoma is an especially important differential di-
agnosis to consider because its treatment and prognosis is far dif-
f erent from AdCC. Small cell carcinoma has been thought to be
distinguished from AdCC in cytology by nuclear molding and
necrosis. However, research has demonstrated the occasional pres-
ence of such features in AdCC as well.11,19 From these reports,
pulmonary AdCC often demonstrated small cell size, coarse chro-
matin13 and occasional nuclear molding.11 Chuah et al.10 also
demonstrated the diagnostic difficulty of AdCC in bronchial wa-
sing by emphasizing the importance of the clean background of
AdCC compared to the necrotic background of small cell carci-
noma. Kim et al.,6 who reported a misinterpreted case of AdCC,
suggested that lack of apoptotic bodies, nuclear debris, frequent
mitoses, and the Azzopardi effect could be distinctive points be-
tween AdCC and small cell carcinoma.

In this study, pulmonary AdCC and small cell carcinoma were
well-distinguished from each other when applying the 15 cyto-
morphological features that we proposed. With the exception of
sheet formation, the remaining fourteen features showed statisti-
cally significant differences. Cellular uniformity (90%), gran-
ular cytoplasm (73%), and organoid cluster formation (100%)
were identified as distinguishable features of pulmonary AdCC
compared to small cell carcinoma. However, some pulmonary
AdCC cases contained cytomorphologic features of small cell
carcinoma-coarse chromatin (55%), indistinct nucleoli (55%),
occasional molding (70%), and necrotic background (18%).
Therefore, one should not depend on a single criterion to con-
clude the diagnosis in cytology of the pulmonary tumor. Instead,
a comprehensive approach using multiple cytomorphological
features is recommended. Among the clinical items we investi-
gated, smoking history was the most distinguishable between
the pulmonary AdCC group and the small cell carcinoma group.
Patients with small cell carcinoma had significant smoking his-
tory. Also, the small cell carcinoma cases showed extensive in-
volve ment of mediastinal lymph nodes compared to the pulmo-
nary AdCC cases. These clinical presentations could also be
helpful for confirmative diagnosis.

Confronting the individual cases of pulmonary AdCC, there
were several points that could be confused with small cell carci-
noma. Tumor cells of case 1 in Table 1 were small and they had
indistinct nucleoli and occasional nuclear molding (in about

![Fig. 1. Cytomorphology of pulmonary adenoid cystic carcinoma. (A) Small cell size, cellular uniformity and hyperchromasia (case 1). (B) Infrequent identified nuclear molding (case 7). (C) Granular cytoplasm and well-defined cell borders (case 7). (D) Distinct nucleoli and sheet formation (case 2). (E) Organoid tumor clusters with smooth border (case 9). (F) Hyaline globules (case 3). (G) Hyaline basement membrane materials (case 3). (H) Necrotic background (case 6).](http://jpatholtm.org/)
20% of total tumor volume (Fig. 2B). Although the chromatin pattern was fine-stippled rather than coarse, and granular cytoplasm was identified in some tumor cells, it was difficult to exclude small cell carcinoma straightforwardly (Fig. 2A). Furthermore, only a small portion of the cytology specimens revealed organoid clusters. The biopsy specimen of case 1 also showed small cell carcinoma-like morphology which was observed in the cytologic slides (Fig. 2C). Recognition of cellular uniformity and focal hyaline basement membrane material was essential in the case. Case 3 in Table 1 consisted of small cells with fine-stippled to coarse chromatin and paucity of granular cytoplasm (Fig. 2E). However, the tumor cells were relatively uniform and lacked...
nuclear molding compared to small cell carcinoma. Careful microscopic examination confirmed the diagnosis by identifying organoid clusters with hyaline basement membrane material. A bronchial washing case (case 6 in Table 1) showed a few tumor cells scattered in the necrotic background (Fig. 2H). Although the cell size was slightly larger than small cells and the chromatin pattern was fine rather than coarse, small cell carcinoma was considered in the differential diagnosis due to the necrotic background. However, background necrosis was far more evident in the small cell carcinoma cases, and the individual cell necrosis and the apoptotic bodies were frequently identified (Fig. 2G). The review of histologic slides obtained later by surgical resection revealed ulceration in the surface of the mass with numerous inflammatory cells (Fig. 2I).

We were suspicious of the low frequency of hyaline globules and hyaline basement membrane materials in the pulmonary AdCC cases, as we thought they were stereotypical features of the AdCC. We therefore randomly selected non-pulmonary AdCC cases and concomitantly evaluated them according to the 15 cytomorphologic features we identified. Interestingly, small cell size was significantly more common in non-pulmonary AdCC. Compared to the non-pulmonary AdCC cases, pulmonary AdCC was less likely to form diffuse sheets or to have hyaline globules. The lack of hyaline globules may make it difficult to diagnose AdCC, especially when the specimen cellularity is low enough so that architectural information specific for AdCC is not available.

A previous study identified a solid variant of pulmonary AdCC, that exhibited tumor cell clusters, which neither formed cylinders/spheres nor were sharply demarcated in cytology.8 Two out of 11 cases included in this study showed the solid pattern of growth in biopsy or resection specimens (cases 1 and 2 in Table 1). However, even though the proportion of organoid clusters was relatively small, both cases had the features that favored the diagnosis of AdCC: cellular uniformity, distinct nucleolus (in case 2 only), granular cytoplasm and hyaline basement membrane material (in case 1 only). Furthermore, lack of frequent molding, single cell necrosis and necrotic background precluded the diagnosis of small cell carcinoma.

We recommend using the fifteen diagnostic features not only in the diagnosis of pulmonary AdCC, but also in the cytopathologic diagnosis of the other AdCC cases. The diagnosis of metastatic AdCC in lymph nodes or other distant organs may not be straightforward because typical architectures such as cribiform or tubular pattern may not be identified in metastatic lesions.8-21 According to the Yu and Caraway19 who reviewed the FNA findings of metastatic AdCC, five cases (62.5%) had a solid arrangement of tumor cells on FNA slides which made it difficult to diagnose.

In summary, we have identified fifteen cytomorphologic features that could be used to successfully distinguish pulmonary AdCC from small cell carcinoma. In this study, we noticed that pulmonary AdCC might be misinterpreted as small cell carcinoma when only a single or a few cytologic features were considered. Therefore, a comprehensive analysis of morphologic features is required in the cytopathologic diagnosis of pulmonary AdCC.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

10. Chuah KL, Lim KH, Koh MS, Tan HW, Yap WM. Diagnosis of ade-
Cytology of Adenoid Cystic Carcinoma of Lung

• 519

A glomus tumor in the mediastinum is very uncommon, and only five cases have been reported in the English literature. We recently encountered a 21-year-old woman with an asymptomatic mediastinal mass that measured 5.3 × 4.0 cm. Surgical excision was performed, and the tumor was finally diagnosed as mediastinal glomus tumor with an uncertain malignant potential. After reviewing this case and previous reports, we analyzed the clinicopathologic features associated with progression of such a tumor.

Key Words: Glomus tumor; Mediastinum; Neoplasms

CASE REPORT

A 21-year-old woman was referred to our hospital due to a mediastinal mass that was incidentally detected on a chest X-ray performed during health screening. The patient did not complain of any notable symptoms. Chest computed tomography scan revealed a densely-enhanced, round to oval-shaped mass in the right cardiophrenic angle of the anterior inferior mediastinum. Small tortuous vascular structures were noted near the tumor (Fig. 1A). The patient underwent thoracoscopic mediastinal mass excision.

On gross examination, the specimen was a relatively well-demarcated solid mass with a rubbery consistency, measuring 5.3 × 4.0 cm. The cut surface of the tumor was tan yellow and had a nodular appearance without a necrotic or hemorrhagic area (Fig. 1B).

Glomus tumors are rare mesenchymal neoplasms that originate from modified smooth muscle cells (glomus body), which help regulate body temperature and control blood pressure.1,2 Although these tumors typically develop in the dermis or subcutis in the acral area, they can occur in deep soft tissue or visceral organs including the esophagus, stomach, rectum, kidney, lung, mediastinum, and urinary bladder.1,3-6 Most glomus tumors are benign. Occasionally, these tumors exhibit atypical histologic features such as large size, infiltrative growth pattern, high nuclear grade, increased mitotic activity and atypical mitosis. Such atypical tumors have been known to be associated with local recurrence or distant metastasis.4,7 Pathologic classification of glomus tumor has recently been suggested based on various clinicopathologic parameters.7

Glomus tumors located in the mediastinum are extremely rare, and only five cases have been reported in the English literature.1-3,8,9 We encountered a case of mediastinal glomus tumor in a 21-year-old woman, and reviewed the clinicopathologic characteristics of this case and previous mediastinal glomus tumor cases.
Fig. 1. Radiologic and macroscopic findings. (A) Chest computed tomography reveals a well-demarcated enhanced mass in the anterior inferior mediastinum. (B) Mediastinal mass shows a gray-white homogeneous cut surface with no necrotic or hemorrhagic focus.

Fig. 2. Macroscopic finding. (A) The tumor displays a sheet-like growth pattern with increased vascularity, and some medium-sized vessels within the tumor have a staghorn appearance. (B) Edematous and myxoid changes are prominent in hypocellular areas. (C, D) Tumor cells have a well-defined cell border and pale to eosinophilic cytoplasm. The nuclei are round and concentrically located with one or two inconspicuous nucleoli. (E) Immunohistochemical staining for smooth muscle actin is positive in tumor cells. (F) CD34 immunohistochemistry is nonreactive in tumor cells.
sels. Medium-sized vessels occasionally appeared with staghorn features and myxoid changes in their walls (Fig. 2A). The tumor displayed both low and high cellular areas. High-powered examination revealed that the tumor was composed of round epithelioid cells, which had clear to eosinophilic cytoplasm with sharply defined borders. The centrally-located vesicular nuclei were round to polygonal, with a mild convoluted contour of nuclear membranes. One or two small inconspicuous nucleoli were noted. Nuclear pleomorphism was not identified (Fig. 2C, D). Mitotic activity was infrequent, observed in fewer than 1/50 high power fields. Atypical mitosis was not found. Lymphovascular or perineural invasion was not observed. Immunohistochemical staining for smooth muscle actin and vimentin showed diffuse and focal positivity, respectively. Tumor cells were not immunoreactive for CD34, calretinin, cytokeratin, desmin, or neuroendocrine markers, including synaptophysin and chromogranin (Fig. 2E, F). Based on the histology and immunohistochemical results, a pathologic diagnosis of glomus tumor with uncertain malignant potential was made. There was no clinicoradiologic evidence of recurrence or metastasis for seven months after surgery.

DISCUSSION

Glomus tumors are unusual benign smooth muscle neoplasms that comprise fewer than 2% of all soft tissue tumors. These tumors are preferentially located in the subungal area of extremities and have a characteristic clinical triad that includes pain, pinpoint tenderness and hypersensitivity to cold temperatures. Clinically, this type of tumor is usually benign, and malignant cases have rarely been reported. Additionally, mediastinal glomus tumors, first described in 1949, are extremely rare; only five cases have been described in the English literature. This is the sixth case of a glomus tumor in the mediastinum.

The pathologic differential diagnoses of mediastinal glomus tumor include carcinoid tumor, hemangiopericytoma, epithelioid leiomyoma, primitive neuroectodermal tumor, and paraganglioma. Characteristic morphologic features that are helpful for distinguishing these tumors include uniform, round tumor cells with centrally-located nuclei, a well-defined cell membrane and immunohistochemical results that are positive for actin and equivocal or negative for CD34, neuroendocrine markers (chromogranin A, synaptophysin, neuron specific enolase) and CD99.

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Symptom</th>
<th>Treatment</th>
<th>Clinical result</th>
<th>Follow-up period</th>
<th>Size (cm)</th>
<th>Local invasion</th>
<th>Nuclear grade</th>
<th>Mitotic activity</th>
<th>Mitotic activity</th>
<th>Diagnosis</th>
<th>Mitotic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brindley</td>
<td>Posterior</td>
<td>29/F</td>
<td></td>
<td>Chest pain</td>
<td>Resection</td>
<td>Free</td>
<td>1 yr</td>
<td>5</td>
<td>No</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Glomus tumor</td>
<td>ND</td>
</tr>
<tr>
<td>Choi et al.</td>
<td>Superior</td>
<td>78/F</td>
<td></td>
<td>Dysphagia, dyspnea, hoarseness</td>
<td>Radiation</td>
<td>Died</td>
<td>2 wk</td>
<td>4.5</td>
<td>Extensive</td>
<td>Low</td>
<td>ND</td>
<td>More than 10/10 HPFs</td>
<td>Malignant glomus tumor, locally infiltrative</td>
<td>ND</td>
</tr>
<tr>
<td>Gaertner et al.</td>
<td>Superior</td>
<td>46/F</td>
<td></td>
<td>Dyspnea</td>
<td>Resection</td>
<td>Free</td>
<td>3 yr</td>
<td>7</td>
<td>Partially</td>
<td>Low</td>
<td>No</td>
<td>ND</td>
<td>Glomus tumor</td>
<td>ND</td>
</tr>
<tr>
<td>Bali et al.</td>
<td>Posterior inferior</td>
<td>26/F</td>
<td></td>
<td>Lower back pain</td>
<td>Resection</td>
<td>Free</td>
<td>5 yr</td>
<td>2</td>
<td>No</td>
<td>Low</td>
<td>ND</td>
<td>ND</td>
<td>Glomus tumor</td>
<td>ND</td>
</tr>
<tr>
<td>Rychlik et al.</td>
<td>Posterior</td>
<td>21/F</td>
<td></td>
<td>No</td>
<td>No</td>
<td>Resection</td>
<td>5.3</td>
<td>7 mo</td>
<td>No</td>
<td>Low</td>
<td>ND</td>
<td>Less than 2/10 HPFs</td>
<td>Glomus tumor of UMP</td>
<td>ND</td>
</tr>
<tr>
<td>Present case</td>
<td>Anterior inferior</td>
<td>21/F</td>
<td></td>
<td>No</td>
<td>Resection</td>
<td>Free</td>
<td>5.3</td>
<td>7 mo</td>
<td>No</td>
<td>Low</td>
<td>ND</td>
<td>Less than 1/50 HPFs</td>
<td>Glomus tumor of UMP</td>
<td>ND</td>
</tr>
</tbody>
</table>

F: female; ND: not detected; HPF: high power fields; M: male; UMP: uncertain malignant potential.
A previous article reported that mediastinal glomus tumors tend to have atypical histologic appearance with cytologic pleomorphism and infiltrate into surrounding tissue. However, clinicopathologic features or distinct classification of glomus tumors in the mediastinum or visceral organs have not been established due to their infrequency. We comprehensively reviewed the clinicopathologic data of mediastinal glomus tumors; this data and the current case are presented in Table 1.

Compared with previous cases, our patient was young and did not present with any symptoms. In addition, although previous mediastinal glomus tumors were frequently found in the posterior superior area, this case was noted in an unusual location, the anterior inferior mediastinum. To investigate the clinicopathologic characteristics in malignant mediastinal glomus tumors, we searched for histologic descriptions in former reports. A previous report indicated that, in a fatal mediastinal glomus tumor case, advanced age, extensive local invasion, and brisk mitotic activity were significant and correlated with poor prognosis in mediastinal glomus tumors.

Glomus tumors with atypical features should be evaluated for variable clinicopathologic features, based on recently-defined classifications. These classifications include tumor location and size, nuclear atypia, and mitosis including atypical ones. The tumors can be categorized into four groups (Table 2). Since glomus tumors that arise in visceral organs, including the mediastinum, can be considered deeply-located tumors, they should be classified as malignant glomus tumor or glomus tumor of uncertain malignant potential. However, only one of six such reported patients died, and the remainder had no evidence of recurrence or metastasis during follow-up. Therefore, we collected and analyzed glomus tumor cases in visceral organs to define and outline characteristics for increased diagnostic accuracy, based on prognosis and adequate treatment.

We described an extremely rare case of mediastinal glomus tumor with no subject symptoms and reviewed the clinicopathologic features of previously reported cases. Considering the unpredictable prognosis of mediastinal glomus tumor, we suggest the need for histopathologic assessment parameters through collection and observation of glomus tumors that originate in the visceral organs.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported in part by the Soonchunhyang University Research Fund. We appreciate the expert counsel of Jae Ro, MD, PhD, Houston Methodist Hospital.

REFERENCES

8. Choi YJ, Yang KH, Sang SJ, Kim BK, Kim SM. Malignant glomus tumor originating in the superior mediastinum: an immunohisto-

Table 2. Classification of glomus tumor with atypical features

<table>
<thead>
<tr>
<th>Group</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant glomus tumor</td>
<td>Severe atypia and increased mitotic activity (more than 5/50 HPFs) or presence of atypical mitosis</td>
</tr>
<tr>
<td>Glomus tumor of uncertain malignant potential</td>
<td>Superficial location and increased mitotic activity (more than 5/50 HPFs) or large size (more than 2 cm) and/or deep location</td>
</tr>
<tr>
<td>Symplastic glomus tumor</td>
<td>Lacks criteria for malignant glomus tumor and severe nuclear atypia</td>
</tr>
<tr>
<td>Glomangiomatosis</td>
<td>Lacks criteria for malignant glomus tumor or glomus tumor of uncertain malignant potential and diffuse growth resembling angiomatosis with prominent glomus component</td>
</tr>
</tbody>
</table>

HPF, high power fields.
CD30-Positive T-Cell Lymphoproliferative Disease of the Oral Mucosa in Children: A Manifestation of Epstein-Barr Virus-Associated T-Lymphoproliferative Disorder

Mineui Hong · Young Hyeh Ko

Department of Pathology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul; "Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Received: May 14, 2015 Revised: July 10, 2015 Accepted: July 13, 2015

Corresponding Author
Young Hyeh Ko, MD, PhD
Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Inwon-ro, Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-2762 Fax: +82-2-3410-0025 E-mail: yhko310@skku.edu

CASE REPORT

Case 1

A 13-year-old boy was referred to our hospital because of a two-week history of a painful 4 cm ulcer on his left lower gingiva. The
A sharply demarcated ulcer developed spontaneously without mechanical irritation. Before admission, he had suffered from recurrent stomatitis and had high fever, night sweats, and diarrhea. He was treated with antibiotics and an antipyretic, but the illness was persistent. On physical examination, he appeared acutely ill. The ulcer along the buccal gingiva was linear with a sharp erythematous margin, and was covered with a purulent exudate (Fig. 1A). He was diagnosed with EUOM before the referral, and

Fig. 1. Clinical finding and histopathologic findings of the oral lesion in case 1. A sharply demarcated linear ulcer was seen at the left lower gingiva (A), which was completely healed 10 days after diagnosis (B). (C) Histologically, infiltration of large atypical cells with many eosinophils was found. (D) CD3 staining highlights large T-blasts. These cells are also stained with CD30 (E) and Epstein-Barr virus (EBV) by EBV-encoded RNA in situ hybridization (F).
the pathology slide was reviewed by the authors.

On retrospective review, biopsy revealed diffuse infiltration of large atypical CD3\(^+\) T-cells intermixed with numerous eosinophils and small lymphocytes in the submucosa and soft tissue with necrosis. These cells were CD3\(^+\), CD30\(^+\), and CD56\(^-\). Some small or large lymphocytes were positive for CD4, TCR\(\gamma\)F1, and granzyme B. EBV-encoded RNA (EBER) was detected in many large atypical cells by in situ hybridization (Fig. 1C–F). TCR\(\gamma\) gene rearrangement study revealed monoclonality (Fig. 2A). Epstein-Barr (EB) viral load in blood was elevated. The diagnosis was revised to EBV-positive T-cell LPD. He was treated with chemotherapy with 106B induction (prednisolone, cyclophosphamide, daunorubicin, vincristine, and L-asparaginase). After 10 days from the diagnosis, the ulcer was resolved. During the 21 months of follow-up period, the oral ulcer showed a wax and wane pattern without further treatment. The patient was quite well; however, EB viral load was persistently high with 34.5 copies/\(\mu\)L in whole blood (normal range up to 1.02 copies/\(\mu\)L) at the last visit (Fig. 2B).

Case 2
An 11-year-old girl was admitted with a 20-day history of buccal abscess. She had suffered from frequent infections since infancy, such as pneumonia, bronchiolitis, and acute gastroenteritis. She also suffered from a two-year history of recurrent fever and oral ulcer. The oral ulcer would develop every two months and spontaneously regress. Two years earlier, a biopsy of the oral ulcer was conducted at another hospital, and was diagnosed as chronic inflammation. Before admission, she showed a buccal abscess and submandibular lymphadenopathy. At admission, there was a 0.3 cm oral ulcer on her left inferior gingiva and broad ulcerative lesion on her palate. Complete blood count was within normal range with a normal T-cell subset. Blood chemistry was within normal limits except for a slightly increased alkaline phosphatase (125 U/L, normal range 42–98 U/L). T lymphocyte proliferative activity in response to mitogens (phytohemagglutinin and concanavalin A) was preserved. A nitroblue-tetrazolium test to exclude chronic granulomatous disease was negative. A biopsy from the buccal ulcer showed mucosal ulcer-
ation with marked inflammatory cell infiltration including eosinophils. The ulcerated mucosa was covered by fibrinopurulent exudate. The submucosa and adjacent skeletal muscle showed diffuse or patchy infiltration of mixed small, medium, and large lymphocytes (Fig. 3A). These lymphocytes were CD3+, which highlighted the irregular nuclear contour of atypical T cells (Fig. 3B). CD30 was positive in the cytoplasmic membrane and perinuclear zone of large atypical lymphocytes (Fig. 3C). Anaplastic lymphoma kinase (ALK) protein was negative. Under the diagnosis of CD30+ T-cell LPD, a subset of ALK-negative anaplastic large cell lymphoma, the patient was treated with chemotherapy with methotrexate and cyclophosphamide. After 15 months of chemotherapy, the patient was stable without disease progression. However, on retrospective review of the specimen, the diagnosis was revised as EBV-positive T-cell LPD, most likely chronic active EBV (CAEBV) infection because of EBV positivity in the majority of the small to large atypical cells (Fig. 3D).

DISCUSSION

One of the main differential diagnoses of CD30+ T-LPD of the oral cavity is EUOM. EUOM is characterized by mucosal ulceration with an underlying extensive inflammatory infiltrate consisting of B and T lymphocytes, macrophages, abundant eosinophils, and large atypical mononuclear cells of variable proportion. Atypical lymphoid infiltration and CD30 positivity can be seen to some extent, in 41% to 70% of cases.\(^1\,6\,8\,10\) Monoclonal T-cell proliferation was reported in 12 of 48 cases analyzed.\(^1\,7\,8\,10\) However, despite the presence of CD30 expression or T-cell monoclonality, the prognosis of EUOM is known to be excellent. Based on the similarity of clinicopathologic features between EUOM and mucosal CD30+ T-cell LPD, at least a subset of EUOM might be CD30+ T-cell LPD of the oral mucosa. In EUOM or CD30+ T-cell LPD, EBV status was unknown because it is usually not examined in routine diagnosis. So far, there are only two reports of EBV status. Agarwal et al.\(^1\) examined three adult patients with oral CD30+ T-cell LPD by EBER in situ hybridization and reported no association between EBV and CD30+ T-cell LPD. Abdel-Naser et al.\(^11\) first demonstrated the association between EBV and EUOM in a 12-year-old boy with an eosinophilic oral ulcer. EBV latent membrane protein was expressed in coexistence with CD30+ T lymphocytes. Epstein-Barr nucle-
Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

12. Cho EY, Kim KH, Kim WS, Yoo KH, Koo HH, Ko YH. The spec-

ar antigen 2 or Zebra antigen was negative. Gene rearrangement studies revealed polyclonal B cells and oligoclonal T cells. Notably, the patient reported by Abdel-Naser et al. and our two patients were children. After primary infection of EBV, most children will completely recover; however, some children can be rarely complicated by severe or persistent infections such as acute hemophagocytic lymphohistiocytosis, systemic T-cell LPD, or CAEBV infection. CAEBV infection mainly involves T or natural killer (NK) cells and is accompanied by varying degrees of lymphoproliferation, which may progress from polyclonal lymphoproliferation to monoclonal disease. Usually, systemic symptoms such as fever persist for more than six months with increased EB viral load in blood or tissues. Although the most frequent symptoms include organomegaly, anemia, and thrombocytopenia, patients often present with uncommon clinical findings such as coronary aneurysms, central nervous system involvement, bowel perforation, or Behçet-like orogenital ulcer. The clinical course is variable and depends on the immune response of the individuals. Some patients have a prolonged and indolent disease course, whereas half the patients die of hemophagocytic syndrome or aggressive NK cell leukemia/lymphoma. One of our patients showed persistently elevated EB viral load in the blood and infiltration of clonal EBV-positive T-cells in an oral ulcerative lesion. We did not examine EB viral load in the blood of the case 2 because this was a retrospective study. Persistent elevation of EB viral load in the blood of the case 1 with monoclonality of infiltrated CD30+ cells suggest that the oral ulcer of these two patients is a manifestation of EBV-associated T-cell LPD, which is clinically consistent with an indolent form of CAEBV infection.

An important differential diagnosis is EBV-positive mucocutaneous ulcer, which is part of the spectrum of age-related EBV-positive LPD. According to Dojcinov et al., the median age of patients was 77 years. In addition, EBV-infected large blasts were mainly B-cells with CD20 expression. The present cases are distinct from EBV-positive mucocutaneous ulcer in their EBV positivity in T-cells and the young age of the patients.

In conclusion, our cases suggest that the pathogenesis and etiology of so-called “oral eosinophilic ulcer” or CD30+ T-cell LPD occurring in children are different from the disease in adults. EUOM and CD30+ T-cell LPD in children is a manifestation of EBV-positive T-cell LPD, and therefore should be distinguished from those of adults. Examination of EBV status in more cases of children and adult patients would provide more convincing data to support our observations.

Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with biliary epithelial differentiation. Malignant transformation of von Meyenburg complex (VMC) to ICC has been reported, and a new subtype of ICC with ductal plate malformation (DPM) pattern has been suggested. However, bile duct adenoma (BDA) is a rare entity and is not as well known as DPM. Moreover, it has not been determined whether BDA is a risk factor of ICC. We present a rare case of ICC with DPM-like features associated with BDA.

CASE REPORT

The publication of the case information and materials was approved by the Institutional Review Board of CHA Bundang Medical Center, CHA University.

A 34-year-old female patient was referred for further evaluation of a small hepatic nodule found on a regular health check-up. She did not have any remarkable medical history associated with liver disease. On magnetic resonance imaging, a 2-cm-sized mass was present in liver segment 4, showing high signal on T1- and low signal on T2-weighted images (Fig. 1A).

The patient underwent hepatic segmentectomy. The liver showed a relatively well-demarcated, subcapsular (5 mm from the capsule), nonencapsulated, solid, rubbery, and pale brown mass. It was multilobulated with a central fibrous scar (Fig. 1B).

Histologically, the nodule was composed of three distinct areas. First, many compact, small, tubular structures lined by single cuboidal to low columnar epithelial cells were present without bile or dilated ducts. Nuclei were small and uniform without any mitotic activity, which was compatible with BDA containing portal tracts (Fig. 2A). Second, the central area showed DPM-like features, having irregularly dilated ductal structures lined by low columnar neoplastic epithelial cells with mild pleomorphism within fibrous stroma (Fig. 2B). Third, the opposite side of the BDA showed ICC. Columnar to cuboidal epithelial cells forming fused glandular structures with nuclear anaplasia and frequent mitoses were present (Fig. 2C). There were transitional areas from BDA to ICC (Fig. 2D).

On immunohistochemistry, cytokeratin (CK) 7, CK19, and epithelial cellular adhesion molecule (EpCAM) were positive, and monoclonal carcinoembryonic antigen (CEA), CD117, p53, and hepatocyte antigen were negative in all three areas. The ICC area showed diffuse positivity for polyclonal CEA; in contrast, the BDA and DPM-like areas showed apical reactivity only. Epithelial membrane antigen was negative in the BDA area, apically reactive in the DPM-like area, and strongly reactive in the ICC area. NCAM was positive in the ICC area, focally positive in the DPM area, but negative in the BDA area. The Ki-67 labeling index was variable, with values of 1%–2% in the BDA area, 10%–20% in the DPM-like area, and 40%–50% in the ICC area (Table 1, Fig. 3).

The remaining parenchyme did not show VMC or DPM features. No recurrence or metastasis was observed at a 28-month follow-up.

DISCUSSION

Some benign hepatic biliary lesions, such as VMC or bile duct...
Fig. 1. Radiologic and gross findings. (A) Magnetic resonance imaging of the liver reveals a 2-cm target appearance lesion (arrow) in segment 4. On a T1-weighted image, the central portion shows low signal intensity (SI), and the peripheral zone shows intermediate to slightly high SI. (B) Grossly, the tumor is a relatively well-defined, solid, pale brown mass with a multinodular margin and central fibrous scar. The tumor has three areas: double line of right upper area, cholangiocarcinoma; dotted central circle, dilated ducts with fibrous stroma; and line of left lower area, bile duct adenoma.

Fig. 2. Microscopic findings of the tumor. (A) One peripheral portion shows highly packed ducts with bland looking nuclei; bile duct adenoma containing portal tracts (arrow). (B) Central area reveals irregularly dilated glandular structures within fibrous stroma, resembling features of ductal plate malformation. (C) In the other peripheral lesion, fused and cribriform glands infiltrate into the stroma. The nuclei are atypical and show brisk mitotic activity; cholangiocarcinoma. (D) The tumor shows a transitional area between bile duct adenoma (right) and cholangiocarcinoma (left). Bland uniform ductal structures become irregular and anastomosing.
adenofibroma, are known candidate precursors of ICC. VMC is a congenital anomaly of biliary cells forming a hepatic tumor-like lesion. Intrahepatic cholangiocarcinoma arising in VMC has been observed since 1961. According to the ductal plate hypothesis proposed in 2011, VMC is implicated in DPM as a developmental anomaly of fetal biliary cells (ductal plate).

Table 1. Immunohistochemical stain of tumor

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Source, clone</th>
<th>BDA area</th>
<th>DPM area</th>
<th>ICC area</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK7</td>
<td>Neomarker, OV-TL 12/30</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CK19</td>
<td>Neomarker, A53-B/A2.26</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Polyclonal CEA</td>
<td>Neomarker, CEA Ab-2</td>
<td>P (apical)</td>
<td>P (apical)</td>
<td>P (membranous)</td>
</tr>
<tr>
<td>Monoclonal CEA</td>
<td>Neomarker, COL1</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>EpCAM</td>
<td>Novocastra, VU-1D9</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>EMA</td>
<td>Cell MARQUE, E29</td>
<td>N</td>
<td>P (apical)</td>
<td>P (membranous)</td>
</tr>
<tr>
<td>NCAM (CD56)</td>
<td>Roche, 123C3</td>
<td>N</td>
<td>P (local)</td>
<td>P</td>
</tr>
<tr>
<td>CD117 (c-KIT)</td>
<td>DAKO, rabbit polyclonal</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>p53</td>
<td>DAKO, DO-7</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Hepatocyte</td>
<td>DAKO, OCH1E5</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ki-67 (%)</td>
<td>Neomarker, SP6</td>
<td>1–2</td>
<td>10–20</td>
<td>40–50</td>
</tr>
</tbody>
</table>

BDA, bile duct adenoma; DPM, ductal plate malformation; ICC, intrahepatic cholangiocarcinoma; CK, cytokeratin; P, positive; CEA, carcinoembryonic antigen; N, negative; EMA, epithelial membrane antigen.

Table 2. Cases of cholangiocarcinoma associated with bile duct adenoma

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Sex/Age (yr)</th>
<th>Location</th>
<th>Size (cm)</th>
<th>Operation</th>
<th>Histology</th>
<th>Associated liver disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasebe et al.⁸</td>
<td>1995</td>
<td>M/59</td>
<td>S4</td>
<td>2.2</td>
<td>Partial resection</td>
<td>ICC with BDA and VMC</td>
<td>No</td>
</tr>
<tr>
<td>Takahashi et al.¹⁰</td>
<td>2010</td>
<td>M/76</td>
<td>S6</td>
<td>3</td>
<td>Resection</td>
<td>ICC with BDA and VMC</td>
<td>No</td>
</tr>
<tr>
<td>Pinho et al.⁹</td>
<td>2012</td>
<td>F/60</td>
<td>S5</td>
<td>3.83</td>
<td>Liver biopsy (at the age of 58)</td>
<td>BDA</td>
<td>No</td>
</tr>
<tr>
<td>Present case</td>
<td>2015</td>
<td>F/36</td>
<td>S4</td>
<td>2</td>
<td>Segmentectomy</td>
<td>ICC with DPM pattern associated with BDA</td>
<td>No</td>
</tr>
</tbody>
</table>

IOC, intrahepatic cholangiocarcinoma; BDA, bile duct adenoma; VMC, von Meyenburg complex; DPM, ductal plate malformation.

Fig. 3. Immunohistochemical staining patterns in three areas. Cytokeratin 19 (CK19) and polyclonal carcinoembryonic antigen (CEA) are positive in all areas, but intensity and location are different. Epithelial membrane antigen (EMA) and NCAM are negative in the bile duct adenoma (BDA) area, weakly positive in the ductal plate malformation (DPM) area, and positive in the cholangiocarcinoma (ICC) area. The Ki-67 labeling index differs in the different areas, from 1%–2% in BDA to 40%–50% in the cholangiocarcinoma area.
ately, cases of ICC with VMC features in a large proportion of the tumor are reported as ICC with predominant DPM pattern (ICC-DPM), a new subtype of ICC.\(^3\)

In the present case, the tumor showed three histologically distinct areas of BDA, DPM, and ICC, and their proportions were 30%, 20%, and 50%, respectively.

BDA is a rare solitary intrahepatic lesion that consists of many small, uniform ducts with benign cuboidal cells and a narrow lumen. The BDA area in the present case was typical and localized to one side. Although BDA can be confused with bile ductular carcinoma foci of ICC-DPM, the latter show malignant epithelium and similar immunoreactivity to ICC-DPM. In contrast to VMC, BDA is not regarded as a precursor of ICC because ICC with BDA has been reported in only three cases (Table 2).\(^8\)\(^-\)\(^10\)

DPM-like areas in our case revealed irregularly dilated glands within fibrous stroma, resembling VMC. The neoplastic columnar cells were different from typical VMC. This DPM-like feature might be a part of ICC-DPM or represent a transitional area between BDA and ICC. There were several unique points in the present DPM-like features that differ from the previously reported ICC-DPM. First, the typical irregular protrusions and bridging structures were not prominent in the DPM-like area in the present case. Second, there was no obvious stromal invasion in this area. Third, ICC and BDA in this case were distinguishable from the DPM-like area grossly, histologically, and immunohistochemically (especially with respect to CEA, EpCAM, NCAM, and Ki-67).\(^3\)

The results of immunohistochemical staining of each area corresponded to the histological diagnosis. Intriguingly, NCAM was expressed in ICC and focally in the DPM-like area. This result supports the previous suggestion that ICC with DPM features is a subtype of hepatocellular-cholangiocarcinoma with stem cell features.\(^3\)

In summary, we present a case of ICC with DPM-like features associated with BDA. Although the etiologic relationship between ICC and BDA or DPM needs further study, the possibility of BDA as a precursor of ICC is presented. Such a situation should be considered when BDA is found on a needle biopsy.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

Paget’s disease has traditionally been divided into mammary and extramammary. Extramammary Paget’s disease (EMPD) most commonly affects the anogenital area, though it can rarely affect the axillae, in which apocrine glands are normally encountered.\(^1\) Herein, we report a rare case of apocrine carcinoma associated with EMPD of the axilla with review of the relevant literature.

CASE REPORT

The publication of the case information and materials was approved by the Institutional Review Board of Keimyung University Dongsan Medical Center.

A 77-year-old man was referred with a 3-month history of an erythematous, hyperkeratotic, and inflamed eczematous patch with focal desquamation and itching sensation in the left axilla. Examination of the left axilla showed a discrete red patch with irregular margins and exudative surface, measuring 5 × 3 cm. No fungal hyphae were noted on the KOH test. Histological examination of a punch biopsy showed round, pale malignant cells scattered individually and in groups throughout the epidermis, particularly in the basal layer. Also, a focal intradermal invasive lesion was noted. The patient was treated with wide excision with margins up to 2 cm. The cut surface of the resected specimen showed a round, pale, tan to white and solid subcutaneous mass, measuring 0.8 cm in diameter. The mass was attached to the overlying skin. Histologically, the subcutaneous mass consisted of large, round to polygonal cells with abundant eosinophilic cytoplasm, indicative of apocrine carcinoma. Some sweat glands in the dermis were filled with malignant cells, similar to those in the subcutaneous mass. These cells also involved the epidermis and showed a typical pagetoid spread. The infiltrative and intraepithelial tumor cells stained positive with periodic acid Schiff and showed strong positive immunohistochemical staining for cytokeratin 7 (CK7) and HER2, confirming the diagnosis of invasive apocrine carcinoma with EMPD (Fig. 1). The tumor cells showed focal and weak positivity for anti-gross cystic disease fluid protein-15 (GCDFP-15) and were negative for GATA-3, estrogen receptor, and progesterone receptor.

Based on these results, the patient was evaluated for evidence of breast cancer to rule out metastatic apocrine carcinoma from the breast. Chest radiograph and breast ultrasonogram showed no definite lesion. After 6 months of follow-up, the patient is healthy and free of symptoms.

DISCUSSION

Paget’s disease is an intraepithelial neoplastic lesion involving Paget cells, which are regarded as apocrine origin because of their immunohistochemical characteristics; positive staining for carcinoembryonic antigen, GCDFP-15, and CK7.\(^2\)

In rare cases, Paget’s disease co-exists with underlying invasive apocrine carcinoma. EMPD with underlying invasive apocrine carcinoma in the axilla is rarer. Morgan et al.\(^3\) reported a case of axillary EMPD with underlying apocrine carcinoma. They reported that 45.5% (5/11) of previously reported axillary EMPDs were associated with an underlying carcinoma.\(^3\) Chiu et
al.4 reported seven cases of EMPD in the unilateral axilla, with only one patient having underlying adnexal carcinoma (14.3%).

Wilkinson and Brown5 classified vulvar EMPD into intraepithelial Paget's disease, intraepithelial Paget's disease with invasion (IP), and intraepithelial Paget's disease with underlying adenocarcinoma (IEPUA). Based on Wilkinson and Brown's classification, the present case was thought to be IEPUA. In other studies of EMPD in the vulvar region, IEPUA represents between 2\% and 37\% of all cases.6-9 Kodama et al.8 reported a recurrence rate of 79.8\% and a survival rate of 27.7\% for patients with IEPUA. Parker et al.9 have similarly reported poor prognosis for patients with IP and IEPUA.7 However, in the report of Chiu et al.,4 no patient experienced recurrence after surgery (mean time of follow-up, 65.7 months) even in the cases of underlying malignancy (i.e., at least IP or IEPUA). All patients in their study underwent local wide excision with margins up to 2–3 cm. The authors offer that the low recurrence rate of patients in their study might be a result of the clear anatomy of the axillary region compared with that of the anogenital area, the early stages of their cases, and the limited follow-up.

When apocrine carcinoma is present in the axilla, metastasis from breast apocrine carcinoma or primary breast cancer in ectopic mammary tissue must be ruled out. Immunohistochemistry is not helpful in differentiating these options.10 In apocrine carcinoma of ectopic mammary tissue, remaining ectopic mammary tissue is present in the sample. To exclude the possibility of metastatic mammary apocrine carcinoma, additional breast examination and radiologic work-up are needed. In the present case, there was no evidence of apocrine carcinoma arising in ectopic mammary tissue or of metastatic mammary apocrine carcinoma.

We report a rare case of EMPD with underlying invasive apocrine carcinoma in the axilla in order to increase awareness of EMPD in the axilla and to highlight its association at this site with adjacent underlying apocrine carcinoma.
Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

Erratum: WHO Grade IV Gliofibroma: A Grading Label Denoting Malignancy for an Otherwise Commonly Misinterpreted Neoplasm

Paola A. Escalante Abril · Miguel Fdo. Salazar · Nubia L. López García · Mónica N. Madrazo Moya · Yadir U. Zamora Guerra · Yadira Gandhi Mata Mendoza · Erick Gómez Apo · Laura G. Chávez Macías

Pathology Unit, Neuropathology Service, Mexico General Hospital, Mexico City, Mexico

To the Editor:

We found errors in our published article.

Page 328, Table 1.

The phrases “Mortality rate (cases with available data) (5/8) = 62.5%” and “Overall mortality rate (cases with available data) (7/10) = 70.0%” of the Table 1 should read “Mortality rate (cases with available data) (3/8) = 37.5%” and “Overall mortality rate (cases with available data) (5/10) = 50.0%”, respectively.

Page 328, left column.

The sentence “However, when considering the lethality of the high-grade-only subset, this value increases to 70% or even 100% in cases with an accompanying glioblastoma component (Table 1).” on page 328 should read “However, when considering the lethality in the sole high-grade subset, this value increases up to roughly 40% or even 100% in those instances with an accompanying glioblastoma component (Table 1).”

Page 329, left column.

The sentence “As shown in our case and previously advised by other authors, gliofibroma prognosis is greatly influenced by the degree of anaplasia of the glial component” on page 329 should read “As shown in our case and previously advised by some authors, gliofibroma prognosis is, indeed, influenced by the degree of anaplasia of the glial component.”

We apologize for the inconvenience caused by these errors.