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Lung cancer is characterized by a high proportion of cases di-
agnosed as unresectable, locally advanced or metastatic disease, 
and among various prevalent cancers, it stands out as one with a 
poor prognosis even at the time of diagnosis [1,2]. Advances have 
revolutionized lung cancer treatment, with platinum-based che-
motherapy serving as a longstanding cornerstone. With the de-
velopment of tyrosine kinase inhibitors targeting epidermal 
growth factor receptor (EGFR) in the early 2000s, targeted ther-
apy has significantly improved the survival of patients with lung 
cancer [3]. Subsequent to EGFR, a deeper understanding of the 
molecular genetics of lung cancers, including ALK, ROS-1, and 
KRAS, has led to the identification of new molecular targets for 
personalized treatment based on individual carcinogenic genetic 
characteristics. However, more than half of lung cancer patients 
do not benefit from targeted therapies, which poses a major 
limitation to their application [3].

The third major revolution in lung cancer treatment was 
brought by the emergence of immunotherapy in the form of 

immune checkpoint inhibitors (ICIs) [4-6]. The discovery of im-
mune checkpoints and the subsequent development of Nobel 
Prize-winning ICIs have facilitated revolutionary changes in lung 
cancer treatment, particularly in non–small cell lung cancer 
(NSCLC) [7]. ICIs targeting key immune evasion genes, such as 
programmed death-ligand 1 (PD-L1) and cytotoxic T lympho-
cyte antigen 4 (CTLA-4), have been developed based on the im-
munological understanding of the interaction between tumor 
cells and immune cells. These inhibitors have been used as a part 
of first-line therapy for various cancers [5,6]. Inhibition of PD-
L1 and CTLA-4–related pathways primes cytotoxic T cells and 
induces anti-tumor activity [6]. ICIs have become an integral 
part of their clinical management in NSCLC patients without 
driver mutations [8].

Despite the growing use of ICIs, some patients are missing 
out on the chance to benefit from them. Moreover, immune-re-
lated toxicities can adversely impact the quality of life for some 
patients or even cause mortality [9,10]. With the widespread 
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application of ICIs in treating patients with NSCLC, the appro-
priate selection of patients likely to benefit from this therapy 
has become increasingly important. Hence, it is imperative to 
identify clinically useful biomarkers for this purpose. PD-L1 
expression, along with tumor mutational burden and mismatch 
gene repair deficiency, has been validated as a predictive marker 
for ICI response and has received U.S. Food and Drug Admin-
istration (FDA) approval for companion diagnostics [11]. Other 
markers, such as tumor mutational burden and microsatellite 
instability, have also been recognized as predictive markers of ICI 
response [11-13]. However, the search for a perfect and reliable 
biomarker for ICI response is ongoing, and advanced molecular 
techniques are not readily available in many clinical situations. In 
this narrative review, we focus on histological predictive markers 
observable during the pathological diagnostic process or through 
immunohistochemical staining to provide valuable insights into 
the nuanced world of predictive biomarkers beyond PD-L1 (Fig. 1).

BIOMARKERS OF RESPONSE AND 
RESISTANCE TO IMMUNOTHERAPY IN 

NON–SMALL CELL LUNG CANCER

PD-L1 expression

PD-L1 expression is currently the only recommended biomark-
er in the National Comprehensive Cancer Network guidelines 
for determining the treatment approach to metastatic NSCLC, 
excluding genomic driver mutations [8]. It is also the sole com-
panion diagnostic test for PD-L1 inhibitors (Fig. 2A) [12,14]. 
PD-L1 expression differs in different subtypes of NSCLC. In a 
literature review of 42 studies, PD-L1 expression was higher in 
squamous cell carcinoma than in adenocarcinoma, 41.05% vs. 
34.72% at > 1% cutoff [15]. Other subtypes of NSCLC have a 
limited number of case studies. However, sarcomatoid carcinoma, 
an aggressive, poorly differentiated subtype of NSCLC, demon-
strated an impressively high rate of PD-L1 positivity. In a cohort 

Fig. 1. Predictive biomarkers for immune checkpoint inhibitor therapy in non–small cell lung cancer that could be observed through histologi-
cal or immunohistochemical observations. CTLA-4, cytotoxic T lymphocyte antigen 4; HLA, human leukocyte antigen; LAG-3, lymphocyte 
activation gene-3; NK, natural killer; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; TCR, T-cell receptor; TIGIT, T-cell im-
munoreceptors with Ig and ITIM domains; TIM-3, T cell immunoglobulin and mucin domain-3; Treg, regulatory T cells; VISTA, V-domain im-
munoglobulin suppressor of T cell activation.
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of 41 patients, 78% of the patients showed positivity at PD-L1 
SP142 ts, and a study by Domblides et al. [16] had 94.7% pos-
itivity at PD-L1 SP263 > 5% [17]. Several clinical trials have 
demonstrated the predictive capability of PD-L1 expression in 
stage IV NSCLC [4]. These trial results both suggest that PD-
L1 expression assists in patient selection and indicate its potential 
to predict the extent of a patient’s treatment response to PD-L1 
inhibitors [12]. However, certain clinical trials have disputed 
the utility of programmed death-1 (PD-1)/PD-L1 expression in 
predicting treatment outcomes in patients receiving these in-
hibitors [18].

PD-L1 expression does not provide absolute certainty in pre-
dicting response or resistance to treatment. Some studies of a 
PD-L1 < 1% expression subgroup highlighted the need for novel 
and complementary methods to identify patients who respond 
to ICIs [18,19]. In the multicohort, open-label phase 1 Check-
Mate 012 trial, increasing PD-L1 expression level was associat-
ed with greater benefit, with an overall response rate of 50%, in 
which nivolumab was used as a first-line therapy for advanced 
NSCLC; however, clinical activity was also observed in a patient 
population with < 1% PD-L1 expression [20]. The PD-L1 inhib-
itor pembrolizumab was administered to patients with a ≥ 50 
PD-L1 tumor proportional score or combined positive score [21] 
(Table 1). Although PD-L1 is widely used as a biomarker in 
clinical practice, and PD-L1 positivity generally predicts thera-
peutic response, its predictive value is not absolute. Challenges 
associated with using PD-L1 as a biomarker include inter- and 
intra-tumor heterogeneity of PD-L1 expression, diversity in PD-
L1 assay methods, cutoff values, and interobserver bias [21,22]. 
To overcome one of the challenges, an artificial intelligence-pow-
ered PD-L1 analyzer was applied to PD-L1 scoring of NSCLC 
slides, and it was shown to improve pathologists’ consensus 
scoring and prediction of therapeutic response [23]. Such an ef-
fort would increase the reliability of PD-L1 interpretation in 
the future. 

Tumor-infiltrating lymphocytes

Tumor-infiltrating lymphocytes (TILs) have undergone exten-
sive study, revealing their crucial role in mediating the immune 
system’s anti-tumor activity. Additionally, tumor-immune sys-
tem interactions have revealed insights into the causes of immu-
notherapy resistance [5]. Analyzing TIL nature at diagnosis both 
predicts immunotherapy outcomes and informs treatment strat-

A B C

Fig. 2. (A) Lung adenocarcinoma tumor cells are expressing programmed death-ligand 1 (PD-L1). PD-L1 is the most validated predictive 
biomarker of immune checkpoint inhibitors for patients with lung non-small cell carcinoma (PD-L1 clone SP263). (B) Lymphoid aggregate 
within lung adenocarcinoma forms a tertiary lymphoid structure. (C) The high endothelial venules are identified through positive staining with 
MECA-79 antibody (MECA-79 staining). 

Table 1. PD-L1 assays approved as companion diagnostic assays 
in Korea, and their cutoff values

Indications PD-L1 cutoff criteria Immunotherapy
Non–small cell lung cancer (1st line therapy)
   SP263 ≥ 50% TC or TPS Pembrolizumab

≥ 1% TC Durvalumab
   SP142 ≥ 10% IC or ≥ 50% TC Atezolizumab
   28-8 ≥ 1% TPS Nivolumab
   22C3 ≥ 50% TC or TPS Pembrolizumab
Non–small cell lung cancer (2nd line therapy)
   SP263 ≥ 10% TC or TPS Nivolumab

≥ 50% TC or TPS Pembrolizumab
   SP142
   28-8 ≥ 10% TC or TPS Nivolumab
   22C3 ≥ 50% TC or TPS Pembrolizumab
Head and neck - squamous cell carcinoma (1st/ 2nd line therapy)
   28-8 ≥ 1% TPS Nivolumab
   22C3 ≥ 1% CPS (1st line) 

≥ 50% TPS (2nd line)
Pembrolizumab

Urothelial cancer (1st line)
   22C3 ≥ 10% CPS Pembrolizumab
Triple-negative breast cancer (1st line)
   SP142 ≥ 1% IC Atezolizumab
   22C3 ≥ 10% CPS Pembrolizumab
Stomach adenocarcinoma/esophagogastric junction 
  adenocarcinoma/esophageal adenocarcinoma
   28-8 ≥ 5% CPS Nivolumab
Cervical cancer
   22C3 ≥ 1% CPS Pembrolizumab
Esophageal squamous cell carcinoma
   28-8 ≥ 1% TPS Nivolumab

PD-L1, programmed death-ligand 1; TC, tumor cell; TPS, tumor cell pro-
portional score; CPS, combined positive score.
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egies. Traditionally, cancer research centered on malignant cells, 
neglecting tumor microenvironment components. However, it 
has gradually been recognized that tumor cells possess antigenic 
properties, inducing an immune response of producing altered 
proteins that the host immune system perceives as harmful [24].

Solid tumors encompass various cellular components in the 
tumor microenvironment, including the extracellular matrix, 
stromal, endothelial, and immune cells [25]. The density, loca-
tion, and organization of immune cells collectively constitute the 
“immune context” [26]. The immune context at diagnosis cor-
relates with clinical outcomes in various tumors, such as mela-
noma and colorectal, lung, and breast cancers [26]. The prog-
nostic value of immune cells is based on their functional status 
and distinct phenotypes. Cytotoxic T cells, helper T cells, natu-
ral killer cells, and dendritic cells contribute to anti-tumor re-
sponses. In contrast, FOXP3-positive regulatory T cells (Tregs) 
and myeloid-derived suppressor cells have pro-tumorigenic ef-
fects and promote cancer growth and invasion [27]. Each im-
mune cell type has different effects, so they carry distinct prog-
nostic significance [26]. The prognostic importance of TIL in 
breast cancer has been extensively studied [28]. The association 
between TIL and breast cancer prognosis was first investigated 
by Aaltomaa et al. in the early 1990s [29]. Since then, several 
researchers have reported the prognostic and predictive value of 
TIL in breast cancer, and these results have been consistent across 
various randomized clinical trials [30]. Several studies have eval-
uated TIL as a continuous parameter in hematoxylin and eosin–
stained tumor sections following the criteria proposed by Den-
kert et al. [31]. International collaborative efforts have sought 
to standardize TIL assessment and enhance reproducibility, and 
recommend scoring stromal TILs as a percentage of stromal ar-
eas between nests of carcinoma cells while excluding the areas 
occupied by the carcinoma cells from the total assessed surface 
area [32]. TIL assessment guidelines established for breast can-
cer are also being applied to NSCLC, melanoma, gastrointesti-
nal tract carcinomas, and other solid tumors [33,33].

In solid tumors, TILs primarily consist of CD4+ and CD8+ T 
cells [34]. CD8+ T cells act as cytotoxic T cells and can directly 
kill tumor cells. Increased CD8+ T-cell infiltration has been as-
sociated with improved patient survival [35,36]. CD4+ T cells 
function as helper T cells or Tregs that mediate diverse functions 
through cytokine secretion. Th cells recruit leukocytes, stimu-
late phagocytes and cytotoxic T cells to kill tumor cells, and 
promote B-cell antibody production [37]. In contrast, CD4+ 
FOXP3+CD25high Treg cells, which express the transcription fac-
tor FOXP3, inhibit effector T cells by secreting cytokines such 

as transforming growth factor β and interleukin-10 or metabo-
lites like adenosine, thereby conferring immunotolerance. Con-
sistently, the presence of CD4+ FOXP3+CD25high Tregs has been 
associated with worsened prognosis in breast cancer and is a 
marker of poor prognosis in NSCLC [38]. The proportion and 
type of TILs, along with their organizational level, could make 
them crucial biomarkers for improving candidate selection for 
ICI therapy. Although the distribution of CD markers (which 
reflect immune profiles in the tumor microenvironment) is a 
potential predictive biomarker of ICI effectiveness in NSCLC, 
comprehensive analyses or randomized clinical trials are yet to 
conclusively establish the utility of TIL as definitive predictive 
biomarkers [8,39,40]. Attempts have been made to create mod-
els that combine PD-L1 expression and TIL infiltration to clas-
sify the tumor microenvironment and discriminate tumors that 
respond best to PD-1 inhibitors [41]. Combining multiple bio-
markers may be a rational approach for tailoring immunothera-
peutic treatments and should be integrated into future clinical 
trials [42,43].

Theoretically, TILs serve as the main activators of anti-tumor 
immunity, and if objectively measured in the entire tumor mi-
croenvironment, they could be a promising biomarker. However, 
quantifying TILs is labor-intensive and limited by spatial dis-
tribution in whole-slide images and interobserver heterogeneity 
[44]. Therefore, establishing clinically relevant TIL cutoff values 
is challenging. The current immunophenotyping concept is based 
on TIL status in the tumor microenvironment, dividing it into 
inflamed (intratumorally distributed TILs), immune-excluded 
(TILs excluded from the cancer stroma), and immune-desert 
(scant TILs in the tumor microenvironment) subtypes [45]. Al-
though pathologists can easily confirm the abundance of TIL 
through microscopic examination, TIL quantification is chal-
lenging. Some cancer types lack lymphocytes, while others, such 
as lymphoepitheliomas, show tumor cells engulfed by lympho-
cytes. Although studies have suggested that immune phenotype 
predicts clinical outcomes of ICI therapy [11], there is a lack of 
standardized methodology for quantifying TILs. To address 
these issues, artificial intelligence–assisted methods have been 
introduced [46], and ongoing research studies are exploring TIL 
quantification using multiplex immunohistochemistry and spa-
tial studies [47].

Tertiary lymphoid structures

Tertiary lymphoid structures (TLSs) are ectopic lymphoid for-
mations that develop under prolonged inflammatory conditions, 
including cancer. Compared to B, T, and dendritic cells, TLSs 
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exhibit varying levels of organization, ranging from locally con-
centrated immune cell aggregates to mature follicles with well-
defined B-cell follicles and germinal centers (Fig. 2B) [48]. Im-
mature TLSs display visible immune cell foci with segregated 
B and T cell zones but lack follicular dendritic cells and germi-
nal centers, which are crucial sites for B-cell proliferation and 
affinity maturation [6]. TLS status demonstrates prognostic po-
tential in various cancer types, including NSCLC, colon cancer, 
breast cancer, and melanoma [48,49]. Additionally, TLS status 
appears to have a predictive value in ICI therapy; it is strongly 
associated with improved survival and clinical outcomes in pa-
tients receiving ICI treatment for solid tumors such as sarcoma, 
melanoma, and renal cell carcinoma [50,51]. Recently, Helmink 
et al. [52] studied the association between renal cell carcinoma 
and TLS status via spatial transcriptomic analysis of formalin-
fixed paraffin-embedded samples and reported higher remission 
rates and longer progression-free survival in patients with TLS-
positive tumors treated with ICI than in those with TLS-nega-
tive tumors.

Some researchers argue that both the presence of immune 
cells and their organization into TLSs are crucial in response to 
immunotherapy [53]. However, the reason for the increase in 
TLS density in ICI responders during treatment remains unclear. 
Nonetheless, histologically evaluated CD20 density is higher at 
baseline in responding patients than in non-responding patients, 
with a further increase observed after ICI treatment [52]. Never-
theless, changes in TLSs due to ICI therapy require prospective 
validation in larger and more homogeneous patient cohorts for 
conclusive evidence, which could establish TLSs as an active and 
beneficial component of ICI treatment. 

The exact contribution of TLSs to anti-tumor responses has 
yet to be fully understood. B cells, a component of TILs, primar-
ily reside within TLSs. The role of B cells in anti-tumor immu-
nity is controversial, with studies suggesting that they contrib-
ute to humoral anti-tumor immune responses by generating 
antibodies against tumor-associated antigens and enhancing 
cellular immunity by secreting cytokines that increase the acti-
vation of antigen-presenting cells (APCs) [54,55]. Theoretical-
ly, intra-tumoral TLSs may lead to a complete B-cell response 
within the tumor, causing a direct anti-tumor effect by maintain-
ing B-cell maturation and antibody production. Notably, B cells 
may alter T-cell activation and function, contributing to the en-
hanced therapeutic effects of ICI [54].

These findings could have clinical applications in improving 
patient selection for ICI therapy, as TLSs can be easily detected 
in standard pathology laboratories. Prospective studies employ-

ing TLSs to select ICI candidates were reported in 2022. In one 
study, patients with advanced soft-tissue sarcoma known to have 
limited responses to ICIs were selected for anti–PD-1 therapy 
based on the presence of TLSs in tumor biopsy specimens. This 
TLS-positive cohort exhibited improved overall response rates 
and median progression-free survival compared with the previ-
ously unselected cohort. Following this, TLS status has been 
employed as an inclusion criterion in several ICI clinical trials; 
more results from similar clinical trials are expected in the near 
future (NCT04705818 and NCT03475953).

It is noteworthy that previous studies have quantified TLS 
differently. Some lung cancer studies evaluated TLSs exclusively 
using the CD208+ dendritic cells present in them. In contrast, 
others used the follicular dendritic cell markers CD21 and CD23 
or assessed TLSs based on the co-localization of CD3+ T cells and 
CD20+ B cells [48,56]. Although there is currently no consen-
sus on a standardized TLS evaluation method, if clinical trial re-
sults with TLS inclusion criteria emerge, the methods used in 
such studies may be accepted as standardized approaches. 

       
EMERGING PREDICTIVE BIOMARKERS OF 

IMMUNE CHECKPOINT INHIBITOR THERAPY

High endothelial venule

Tumor-associated high endothelial venules (TA-HEVs) origi-
nate from post-capillary venules and are characterized by an ele-
vated expression of high endothelial venule-specific sulfated 
MECA-79 (PNAd) antigens (Fig. 2C). TA-HEVs play a crucial 
role in lymphocyte recirculation and TLS formation, and in-
creased HEV values are associated with a favorable prognosis in 
gastric cancer [57,58]. Recent discoveries suggest that ICIs in-
crease the network of TA-HEVs and enhance CD8+ T-cell infil-
tration [59]. Furthermore, anti-angiogenic therapy downregu-
lates continuous angiogenic signaling, resulting in vasculature 
normalization and promoting TA-HEV formation [60,61]. De-
spite these significant developments, the characterization of TA-
HEVs in the context of ICI therapy for NSCLC remains poorly 
defined [62]. Studies have suggested an association between TA-
HEVs and the tumor microenvironment in solid tumors; how-
ever, further investigations are warranted to determine the use-
fulness of TA-HEVs in selecting patients for ICI therapy [63]. 

HLA class I

The major histocompatibility complex, the human leukocyte 
antigen (HLA), includes cell surface molecules responsible for 
presenting and recognizing self- and non-self peptides. It is en-
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coded by a highly polymorphic gene complex. The HLA gene 
complex contains more than 200 loci on the short arm of chro-
mosome 6. Population surveys have identified thousands of al-
lelic variants of HLA molecules primarily influenced by the na-
ture and composition of the peptide-binding groove [64], and 
these variants are associated with the risk of developing various 
diseases, including cancer [65].

Human leukocyte antigen class I (HLA-I) promotes the clon-
al amplification and cellular activation of naïve TCD8 lympho-
cytes by presenting intracellular antigenic peptides. HLA-I ex-
hibits polymorphisms in its antigenic peptide-binding region, 
allowing each variant to bind to a specific repertoire of peptide 
ligands [66]. The HLA genotype, which generates this diversity, 
has been linked to the prognosis of patients receiving ICIs, with 
certain supertypes associated with improved or lower survival 
[67]. Beta-2-microglobulin (B2M), a component of HLA-I, is 
required for antigen presentation by dendritic cells. B2M mu-
tations can lead to resistance to ICI therapy, with B2M abnor-
malities associated with cancer progression in 29.4% of the cases 
[68]. B2M mutations or decreased expression have been linked 
with ICI outcomes in patients with head and neck squamous 
cell carcinoma and melanoma [69,70].

The HLA class I antigen-derived peptide complex is crucial 
for presenting tumor antigens to naïve T cells. The activation of 
naïve T cells requires the interaction of HLA class I-derived pep-
tide complexes with the T cell receptor and co-stimulatory li-
gands, such as the B7 family, on APCs [64]. The balance between 
co-stimulatory and co-inhibitory signaling, mediated by im-
mune checkpoint molecules such as PD-1 and CTLA-4, tightly 
regulates T-cell activation. Some tumor cells evade the host im-
mune system due to defects in their ability to present tumor an-
tigens to naïve T cells via HLA class I molecules [70]. Research 
is ongoing to investigate the impact of HLA class I expression 
on the ICI response. In murine solid tumor models, HLA class I 
expression is reportedly a predictor of ICI response and an overall 
marker of immunogenicity [71,72]. In vivo studies using HLA 
class I and class II knockout mice treated with PD-1 antibodies 
showed strong anticancer effects [73]. Although several in vivo 
studies have suggested that HLA class I expression may be a pre-
dictive marker, clinical evidence remains limited. For instance, 
in patients with melanoma treated with ICI, post-treatment 
samples showed significantly lower HLA class I expression, par-
ticularly in the progressing metastases of non-responding pa-
tients [74]. Retrospective evaluation of patients with metastatic 
melanoma treated with ipilimumab or nivolumab revealed as-
sociations between HLA class I expression and tumor response, 

with different patterns observed for each treatment [67]. Fur-
ther studies are underway to analyze whether the patient’s HLA 
class I subtype influences the ICI response, indicating its poten-
tial predictive value. 

       
Novel target immune checkpoint biomarkers

PD-1/PD-L1 and CTLA-4 inhibitors are most widely used 
for ICI therapy of lung cancer; however, the development of drug 
resistance remains a challenge. Recently, novel immune check-
point targets, such as T-cell immunoreceptors with Ig and ITIM 
domains (TIGIT), have shown promise in preclinical and early 
clinical studies, offering hope to overcome resistance to conven-
tional ICIs [75]. TIGIT, which is expressed in activated natural 
killer and regulatory T cells, binds to CD155 (PVR) and CD112 
(PVRL2 and nectin-2), ligands on tumor cells and antigen-pre-
senting cells in the tumor microenvironment [75]. A recent ran-
domized phase II clinical trial demonstrated that combining 
anti-TIGIT antibody tiragolumab and atezolizumab as first-
line therapy for advanced PD-L1–positive NSCLC significantly 
increased objective response rate and progression-free survival 
compared to the control group. Based on these results, the FDA 
recently granted breakthrough therapy designation to tiragolum-
ab [75]. TIGIT expression, particularly in CD3+ TIL and peri-
tumoral lymphocyte infiltrates, indicates an “exhausted” T cell 
phenotype in the tumor microenvironment. Additionally, TIG-
IT expression positively correlates with PD-1 and PD-L1 den-
sity, indicating the synergy between these immune checkpoint 
axes in lung squamous cell carcinoma and melanoma [76,77]. 
In lung squamous cell carcinoma tissues analyzed using immu-
nohistochemistry, 85.8% expressed CD155 (PVR) and 26.8% 
expressed PD-L1. High TIGIT density and high CD155/TIG-
IT expression correlated with advanced tumor, nodal, and me-
tastasis (TNM) stage and worse overall survival when TIGIT-
positive TIL were counted [76]. Although TIGIT expression has 
been studied in various solid tumors [75-77], data on TIGIT or 
TIGIT ligands as immunohistochemical biomarkers in NSCLC 
are limited. Currently, the immunohistochemical status of 
TIGIT is not a prerequisite for the use of TIGIT inhibitors, and 
PD-L1 positivity is considered sufficient. No data exist on the 
potential role of TIGIT as a predictive marker for anti-TIGIT reg-
imens [75]. In most clinical trials, anti-TIGIT agents are admin-
istered in combination with anti–PD-1/PD-L1 or anti–CTLA-4 
inhibitors; however, some trials on NSCLC have investigated 
anti-TIGIT monotherapy (NCT02964013, NCT04165070). 
Further studies are needed to determine the role of TIGIT ex-
pression as a predictive marker of response to anti-TIGIT thera-
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py regimens, particularly in lung cancer, which has been the fo-
cus of most immunotherapy trials.

Another novel ICI target is lymphocyte activation gene-3 
(LAG-3), which is expressed in activated CD4+/CD8+ T cells, 
regulatory T cells, natural killer (NK) cells, B cells, and plasma-
cytoid dendritic cells. LAG-3 signaling plays a negative regula-
tory role in T helper 1 cell activation, proliferation, and cytokine 
secretion, allowing tumor cells to evade the host immune system 
[78]. Several LAG-3 inhibitors are under development, and some 
are undergoing phase II trials as first-line therapies for advanced 
NSCLC [79]. LAG-3 expression in TIL in NSCLC appears pos-
itively correlated with PD-1/PD-L1 expression [80]. However, 
similar to TIGIT, no prospective study has assessed the poten-
tial value of LAG-3 as a predictive NSCLC biomarker.

Other novel ICI targets include T cell immunoglobulin and 
mucin-domain containing-3, NK group 2 member A (NKG2A), 
and CD73 [81]. CD73, acting as an immune checkpoint, gen-
erates adenosine, inhibiting immune activation via the A2A re-
ceptor [82]. CD73 is upregulated in various cancers, including 
lung cancer, and its overexpression in tumor tissues is associated 
with poor prognosis [83-85]. In preclinical studies, combina-
tion therapy with PD-1/PD-L1 and CD73 inhibitors has dem-
onstrated synergistic anti-tumor effects [86]. CD73 expression 
in NSCLC positively correlates with a “hot” immune environ-
ment, including PD-L1 expression and the presence of TIL [85]. 
However, more data are necessary to comprehend the effects of 
CD73 on the tumor microenvironment [87,88]. Retrospective 
analyses of NSCLC patients treated with anti–PD-1/PD-L1 
therapy indicate that high CD73 expression may predict a favor-
able response, particularly in EGFR-mutant patients [89]. Given 
the high EGFR mutation rate in the East Asian population, 
CD73 may be a crucial therapeutic target and predictive marker.

Several other immune checkpoint targets, including V-domain 
immunoglobulin suppressor of T cell activation (VISTA), B7-H3 
(CD276), indoleamine 2,3-dioxygenase 1, glucocorticoid-in-
duced tumor necrosis factor receptor–related receptor, and 
CD47, are under investigation [81,90]. Ongoing clinical trials 
are evaluating these inhibitors alone and in combination with 
PD-1 and PD-L1 inhibitors [90]. As more ICIs are integrated 
into therapy, discovering predictive markers for optimal patient 
selection will become increasingly necessary.

CONCLUSION

ICIs are increasingly utilized as standard treatments in clini-
cal settings, particularly for stage III locally advanced NSCLC 

and extensive-stage small cell lung cancer, with an emphasis on 
metastatic NSCLC. Future indications for its use are expected to 
expand. However, additional research is required to identify bio-
markers that are more reliable than PD-L1 expression and that 
are readily usable in daily practice. Discovering a cost-effective, 
easily accessible predictive biomarker would significantly en-
hance patient stratification and management, ultimately im-
proving overall patient care. Furthermore, advancements in un-
derstanding the mechanisms of resistance to ICIs and strategies 
to overcome them, along with pathological methods for predic-
tion, are crucial for further progress in this field.
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