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Microsatellite instability (MSI) is a condition of genetic hyper-
mutability caused by an impaired DNA mismatch repair system, 
which arises through a germline or somatic mutation, or a pro-
moter hypermethylation [1]. MSI-high (MSI-H) or mismatch 
repair deficiency (dMMR) status in solid tumors predicts their 
response to immune checkpoint blockade [2]. Thus, in 2017, 
the U.S. Food and Drug Administration (FDA) approved the 
programmed death-1 (PD-1)–blocking agent pembrolizumab 
for treatment of unresectable or metastatic MSI-H/dMMR solid 
tumors, irrespective of cancer type; this was the first cancer site/
histology-agnostic biomarker approved by the FDA [3]. However, 
the prevalence of MSI is highly variable across cancer types; it is 
very low (< 1%) in non-Hodgkin lymphomas, except immuno-
deficiency-related lymphomas [4-8]. MSI has been studied widely 
in colon cancer and endometrial cancer but only rarely in diffuse 
large B-cell lymphoma (DLBCL) [4,8,9]. The clinical relevance 

of MSI in patients with DLBCL, in terms of prognostic signifi-
cance or as a predictor of the response to immune checkpoint 
blockade, is unknown. Here, we report an unusual case of MSI-
H/dMMR DLBCL initially identified by clinical targeted gene 
sequencing (TGS) and subsequently confirmed by MSI testing.

CASE REPORT

A 90-year-old female presented with vaginal bleeding. A 
protruding polypoid mass measuring 5.8 cm was detected in 
the upper vagina by pelvic magnetic resonance imaging. Positron 
emission tomography revealed an additional focal hypermetabolic 
lesion in the presacral area. A tissue biopsy was conducted under 
the suspicion of cervical cancer. The patient was diagnosed with 
DLBCL with a germinal center B-cell-like (GCB) phenotype 
determined by immunohistochemistry (IHC)-based Hans algo-
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rithm, clinical stage of IIA, and Eastern Cooperative Oncology 
Group performance status of 1. Rituximab and reduced-dose 
CHOP (cyclophosphamide, doxorubicin, vincristine, and pred-
nisone) resulted in complete remission (CR), but after 9 months, 
she suffered local relapse at the uterine cervix and underwent 
tumor excision. Microscopically, the tumor was composed of 
atypical lymphoid cells with a centroblastic morphology and 
diffuse arrangement. IHC for CD3, CD20, C-MYC, BCL-2, 
BCL-6, CD10, MUM1, Ki-67, CD8, and programmed death-
ligand 1 (PD-L1) (clone E1L3N) and in situ hybridization for 
Epstein-Barr virus (EBV) and fluorescence in situ hybridization 
(FISH) for MYC were performed. Tumor cells were positive for 
CD20, CD10, and BCL-6 but negative for MUM1, BCL-2, C-
MYC, and EBV. The Ki-67 labeling index of tumor cells was 
80% (Fig. 1A–H). MYC translocation was not observed in FISH 
(data not shown). The tumor was diagnosed again as DLBCL 
with a GCB phenotype. Scattered CD3+ or CD8+ tumor-infil-
trating lymphocytes were observed (Fig. 1I, J), and PD-L1 was 
expressed in tumor-associated macrophages and in about 5% of 
tumor cells (Fig. 1K). TGS was performed using a customized 
panel comprising 121 lymphoma-related genes and formalin-

fixed paraffin-embedded sections of the surgical specimen; it 
revealed 16 mutations across 15 genes including ARID1A, DN-
MT3A, PDCD1, SETD2, PDGFRA, TET2, PRDM1, CARD11, 
ATM, KMT2D, B2M, CREBBP, CIITA, GNA13, and BTK 
(Table 1). The tumor was genetically classified as EZB subtype 
DLBCL according to the LymphGen algorithm (https://llmpp.
nih.gov/lymphgen/index.php) [10]. In addition, 34 further 
mutations (27 missense mutations, 5 frameshift mutations, 1 
inframe indel mutation, and 1 stop-gain mutation) in 28 genes 
were identified as rare germline variants or variants of uncertain 
significance (data not shown). Although microsatellite markers 
were not included in this lymphoma panel, the unusually high 
number of variants, including a large number of frameshift mu-
tations, suggested MSI. A fragmentation assay based on the 
Bethesda guidelines, immunohistochemistry of four proteins in-
volved in the mismatch repair (MMR) pathway (MLH1, MSH2, 
MSH6 and PMS2), and a U-TOP MSI detection test (Seasun 
Biomaterials Inc., Daejeon, Korea) were conducted. On the frag-
mentation assay, four (BAT25, BAT26, D2S123, and D17S2720) 
of the five Bethesda microsatellite markers showed features sug-
gestive of MSI (data not shown). A loss of MLH1 and PMS2 
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Fig. 1. Microscopy and immunohistochemical findings. (A) Atypical lymphoid cells show a centroblastic morphology and diffuse growth pat-
tern. Atypical lymphoid cells are positive for CD20 (B), CD10 (C), and BCL6 (D) and are negative for MUM1 (E), BCL2 (F), and C-MYC (G). 
The Ki-67 labeling index was 80% (H). Scattered small CD3+ cells (I) and CD8+ cells (J) are observed. Programmed death-ligand 1 is expressed 
mainly in tumor-associated macrophages and occasionally in tumor cells (insert, about 5% of tumor cells in the whole slide) (K). Immunohis-
tochemistry reveals mismatch repair proteins and loss of expression of MLH1 (L) and PMS2 (M) but intact expression of MSH6 (N) and 
MSH2 (O). 
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protein expression was detected by immunohistochemistry (Fig. 
1L–O), and the U-TOP MSI detection test, which uses five quasi-
monomorphic mononucleotide markers that do not require 
samples of normal tissue from the patient for comparison [11], 
showed MSI in all five markers, confirming the MSI-H/dMMR 
status of the tumor (Fig. 2). The patient was treated by radio-
therapy of the involved site and has been in metabolic CR for the 
past 7 months. 

DISCUSSION

MSI-H or dMMR status is the first tissue-agnostic biomarker 
approved by the FDA for cancer therapy and, more specifically, 
for pembrolizumab therapy [3]. Patients with MSI-H/dMMR 
tumors have shown a favorable clinical response to PD-1 block-
ade, regardless of cancer type [2]. This illustrates the need for 
MSI-H tumor detection. MSI-PCR of the Bethesda panel to as-

sess three dinucleotide repeats (D2S123, D5S346, D175250) 
and two mononucleotide repeats (BAT26, BAT25) is the gold 
standard for detecting MSI. According to the revised Bethesda 
guidelines, pentaplex PCR with five quasi-monomorphic mono-
nucleotide repeats can detect MSI with high sensitivity and 
specificity and might not need matched normal tissue [1]. To-
gether with immunohistochemistry for MMR proteins, it allows 
determination of MMR status [1]. MSI testing performed in 
endometrial, colorectal, and gastric cancers has revealed high vari-
ability in the frequency of MSI-H among cancers [4,12]. How-
ever, the frequency of MSI-H non-Hodgkin lymphoma gener-
ally is low (0%–2%), which has hampered standardized MSI 
testing as a routine diagnostic method [4,12]. Recently, next-
generation sequencing (NGS)-based TGS using a panel of tumor 
markers has been introduced for molecular pathologic diagnosis. 
In solid tumors, NGS-based MSI tests have shown high sensi-
tivity and specificity in the absence of control normal tissue [4-7]. 

Table 1. Variants found in DLBCL by targeted sequencing based on 121 lymphoma-related genes (excluding rare germline variants or vari-
ants of uncertain significance)

Gene Chr Position Reference sequence Exon cDNA change AA change VAF (%)

ARID1A chr1 27105930 NM_006015.4 20 c.5548dupG p.Asp1850fs 34.32
DNMT3A chr2 25457242 NM_022552.4 23 c.2645G > A p.Arg882His 44.45
PDCD1 chr2 242795103 NM_005018.2 2 c.105delC p.Thr36fs 36.23
SETD2 chr3 47125614 NM_014159.6 12 c.5656G > A p.Glu1886Lys 41.73
PDGFRA chr4 55151558 NM_006206.4 17 c.2347delT p.Ser783fs 42.52
TET2 chr4 106193857 NM_001127208.2 10 c.4319G > A p.Arg1440Gln 44.39
PRDM1 chr6 106555015 NM_001198.3 7 c.2132C > A p.Ala711Asp 43.55
CARD11 chr7 2983911 NM_032415.5 5 c.619C > T p.Arg207Cys 42.73
ATM chr11 108216612 NM_000051.3 58 c.8561G > A p.Arg2854His 40.91
KMT2D chr12 49420238 NM_003482.3 48 c.15511C > T p.Arg5171Trp 43.12
KMT2D chr12 49431873 NM_003482.3 34 c.9265dupG p.Val3089fs 36.08
B2M chr15 45003779 NM_004048.2 1 c.35T > C p.Leu12Pro 44.60
CREBBP chr16 3786070 NM_004380.2 28 c.4694delA p.Lys1565fs 42.97
CIITA chr16 11001304 NM_001286402.1 11 c.1965dupC p.Gly656fs 82.74
GNA13 chr17 63052509 NM_006572.5 1 c.203T > G p.Met68Arg 43.85
BTK chrX 100613407 NM_000061.2 12 c.993A > G p.Ile331Met 45.38

Chr, chromosome; AA, amino acid; VAF, variant allelic frequency.

Marker BAT-26 NR-24 NR-21 NR-27 BAT-25

MSI                             MSI (+)                                 MSI (+)                                 MSI (+)                                 MSI (+)                                 MSI (+)
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Fig. 2. Microsatellite instability (MSI) test results. MSI was detected in all five quasi-monomorphic markers using the U-TOP MSI detection 
test, revealing the MSI-high (MSI-H) status of the tumor. Genomic DNA from HeLa cells was used as a negative control.
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Although unified criteria for detection of MSI by NGS are lack-
ing, many laboratories are using MMR-related genes and MSI 
markers, as well as bioinformatics algorithms, for tumor diag-
nosis [4-7]. 

The FDA has approved PD-1 blockade therapy based on its 
efficacy in patients with hematologic malignancies, including 
Hodgkin lymphoma and primary mediastinal large B-cell lym-
phoma [13,14]. A recent study demonstrated the potential benefit 
of PD-1 blockade in combination with R-CHOP in patients 
with treatment-naive DLBCL overexpressing PD-L1 [15]. How-
ever, both the MSI landscape and efficacy of PD-l blockade for 
MSI-H lymphoma remain unclear. A previous study reported 
DLBCL with defects in DNA repair genes, including tumor sup-
pressor genes, MMR-related genes (e.g., MSH2 and MSH6), and 
non-homologous end-joining pathway-related genes, and it sug-
gested an association of genomic instability phenotype with tu-
morigenesis of DLBCL [16]. However, recent analyses of NGS 
data showed that MSI-H in non-Hodgkin lymphoma, including 
DLBCL, is either extremely rare (<1%) or not a feature of these 
tumors [4-7]. In contrast to those reports, a study using a com-
mercial MSI kit, based on eight mononucleotide repeat markers 
and two pentanucleotide repeat markers, identified MSI-H and 
microsatellite instability–low (MSI-L) in 3% (3/92) and 10% 
(9/92) of DLBCLs, respectively [9]. According to the authors, 
patients with MSI-H DLBCL tended to have a better prognosis 
than those with microsatellite stable DLBCL, although the differ-
ence was not significant [9]. They also reported that MSI-L DLBCL 
was associated with a poor response to chemotherapy [9]. These 
results suggest that MSI status could be a useful biomarker for 
DLBCL. 

Reports on the prognostic and therapeutic impacts of molec-
ular genetic classification of DLBCL indicate the potential utility 
of TGS in individually tailored treatment for DLBCL [10,17]. 
The LymphGen algorithm classified DLBCLs into five genetic 
subtypes: MCD (including MYD88 L265P and CD79B muta-
tions), BN2 (including BCL6 translocations and NOTCH2 
mutations), N1 (including NOTCH1 mutations), EZB (includ-
ing EZH2 mutations and BCL2 translocations), and A53 (aneu-
ploid with TP53 inactivation) [10]. Our inclusion of 121 lym-
phoma-related genes allowed successful genetic determination of 
the tumor as EZB, which is the most common genetic subtype 
of GCB-DLBCL [10]. TGS also revealed frequent frameshift 
mutations and C:G → A:T transversions, as previously reported 
in MMR-mutated DLBCLs [16]. Although MMR gene muta-
tions could not be identified directly using our lymphoma panel, 
the unique mutational pattern of our patient’s tumor was sug-

gestive of an MSI-H/dMMR DLBCL. The MSI status of the 
tumor was confirmed by two kinds of MSI tests for microsatellite 
markers (i.e., MSI-fragmentation assay and MSI-pentaplex real-
time PCR using U-TOP MSI detection test), as well as by im-
munohistochemistry for four MMR proteins. 

However, because our patient did not receive PD-l blockade 
therapy, the efficacy for treating this type of tumor could not be 
determined. Nonetheless, this case shows that MSI-H/dMMR 
can be present in DLBCL, albeit rarely, and the utility of TGS for 
detection of MSI-H/dMMR in hematolymphoid malignancies.
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