Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "Programmed cell death-ligand 1"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Reviews
Programmed cell death-ligand 1 assessment in urothelial carcinoma: prospect and limitation
Kyu Sang Lee, Gheeyoung Choe
J Pathol Transl Med. 2021;55(3):163-170.   Published online April 7, 2021
DOI: https://doi.org/10.4132/jptm.2021.02.22
  • 3,323 View
  • 138 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDF
Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) inhibition has revolutionized the treatment paradigm of urothelial carcinoma (UC). Several PD-L1 assays are conducted to formulate appropriate treatment decisions for PD-1/PD-L1 target therapy in UC. However, each assay has its own specific requirement of antibody clones, staining platforms, scoring algorithms, and cutoffs for the determination of PD-L1 status. These prove to be challenging constraints to pathology laboratories and pathologists. Thus, the present article comprehensively demonstrates the scoring algorithm used and differences observed in each assay (22C3, SP142, and SP263). Interestingly, the SP142 score algorithm considers only immune cells and not tumor cells (TCs). It remains controversial whether SP142 expressed only in TCs truly accounts for a negative PD-L1 case. Moreover, the scoring algorithm of each assay is complex and divergent, which can result in inter-observer heterogeneity. In this regard, the development of artificial intelligence for providing assistance to pathologists in obtaining more accurate and objective results has been actively researched. To facilitate efficiency of PD-L1 testing, several previous studies attempted to integrate and harmonize each assay in UC. The performance comparison of the various PD-L1 assays demonstrated in previous studies was encouraging, the exceptional concordance rate reported between 22C3 and SP263. Although these two assays may be used interchangeably, a clinically validated algorithm for each agent must be applied.

Citations

Citations to this article as recorded by  
  • Aspectos prácticos sobre la determinación de PD-L1 en el tratamiento de carcinoma urotelial. Consenso del grupo de uropatología de la SEAP
    Antonio López-Beltrán, Pilar González-Peramato, Julián Sanz-Ortega, Juan Daniel Prieto Cuadra, Isabel Trias, Rafael J. Luque Barona, María Eugenia Semidey, Pablo Maroto, Ferran Algaba
    Revista Española de Patología.2023; 56(4): 261.     CrossRef
  • Systemic treatment of advanced and metastatic urothelial cancer: The landscape in Australia
    Howard Gurney, Timothy D. Clay, Niara Oliveira, Shirley Wong, Ben Tran, Carole Harris
    Asia-Pacific Journal of Clinical Oncology.2023; 19(6): 585.     CrossRef
  • PD-L1 Testing in Urothelial Carcinoma: Analysis of a Series of 1401 Cases Using Both the 22C3 and SP142 Assays
    Harriet Evans, Brendan O’Sullivan, Frances Hughes, Kathryn Charles, Lee Robertson, Philippe Taniere, Salvador Diaz-Cano
    Pathology and Oncology Research.2022;[Epub]     CrossRef
  • Insights on recent innovations in bladder cancer immunotherapy
    Mohamed A. Abd El‐Salam, Claire E.P. Smith, Chong‐Xian Pan
    Cancer Cytopathology.2022; 130(9): 667.     CrossRef
  • What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 1: Focus on Immunohistochemical Results with Discussion of Pre-Analytical and Interpretation Variables
    Andrea Palicelli, Martina Bonacini, Stefania Croci, Cristina Magi-Galluzzi, Sofia Cañete-Portillo, Alcides Chaux, Alessandra Bisagni, Eleonora Zanetti, Dario De Biase, Beatrice Melli, Francesca Sanguedolce, Moira Ragazzi, Maria Paola Bonasoni, Alessandra
    Cells.2021; 10(11): 3166.     CrossRef
Tumor immune response and immunotherapy in gastric cancer
Yoonjin Kwak, An Na Seo, Hee Eun Lee, Hye Seung Lee
J Pathol Transl Med. 2020;54(1):20-33.   Published online November 1, 2019
DOI: https://doi.org/10.4132/jptm.2019.10.08
  • 12,946 View
  • 722 Download
  • 58 Web of Science
  • 52 Crossref
AbstractAbstract PDF
Remarkable developments in immuno-oncology have changed the landscape of gastric cancer (GC) treatment. Because immunotherapy intervenes with tumor immune response rather than directly targeting tumor cells, it is important to develop a greater understanding of tumor immunity. This review paper summarizes the tumor immune reaction and immune escape mechanisms while focusing on the role of T cells and their co-inhibitory signals, such as the immune checkpoint molecules programmed death-1 and programmed deathligand 1 (PD-L1). This paper also describes past clinical trials of immunotherapy for patients with GC and details their clinical implications. Strong predictive markers are essential to improve response to immunotherapy. Microsatellite instability, Epstein-Barr virus, PD-L1 expression, and tumor mutational burden are now regarded as potent predictive markers for immunotherapy in patients with GC. Novel immunotherapy and combination therapy targeting new immune checkpoint molecules such as lymphocyte-activation gene 3, T cell immunoglobulin, and mucin domain containing-3, and indoleamine 2,3-dioxygenase have been suggested, and trials are ongoing to evaluate their safety and efficacy. Immunotherapy is an important treatment option for patients with GC and has great potential for improving patient outcome, and further research in immuno-oncology should be carried out.

Citations

Citations to this article as recorded by  
  • Ubiquilin-4 induces immune escape in gastric cancer by activating the notch signaling pathway
    Quan Jiang, Hao Chen, Shixin Zhou, Tao Zhu, Wenshuai Liu, Hao Wu, Yong Zhang, Fenglin Liu, Yihong Sun
    Cellular Oncology.2024; 47(1): 303.     CrossRef
  • Expression and prognostic value of APOBEC2 in gastric adenocarcinoma and its association with tumor-infiltrating immune cells
    Lipan Wei, Xiuqian Wu, Lan Wang, Ling Chen, Xuejun Wu, Tiantian Song, Yuanyuan Wang, Wenjun Chang, Aizhen Guo, Yongdong Niu, Haihua Huang
    BMC Cancer.2024;[Epub]     CrossRef
  • Identification and characterization of CLEC11A and its derived immune signature in gastric cancer
    Qing Zheng, Zhenqi Gong, Baizhi Li, Runzi Cheng, Weican Luo, Cong Huang, Huaiming Wang
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Computed tomography-detected extramural venous invasion-related gene signature: a potential negative biomarker of immune checkpoint inhibitor treatment in patients with gastric cancer
    Hao Yang, Xinyi Gou, Caizhen Feng, Yinli Zhang, Fan Chai, Nan Hong, Yingjiang Ye, Yi Wang, Bo Gao, Jin Cheng
    Journal of Translational Medicine.2023;[Epub]     CrossRef
  • A standardized pathology report for gastric cancer: 2nd edition
    Young Soo Park, Myeong-Cherl Kook, Baek-hui Kim, Hye Seung Lee, Dong-Wook Kang, Mi-Jin Gu, Ok Ran Shin, Younghee Choi, Wonae Lee, Hyunki Kim, In Hye Song, Kyoung-Mee Kim, Hee Sung Kim, Guhyun Kang, Do Youn Park, So-Young Jin, Joon Mee Kim, Yoon Jung Choi,
    Journal of Pathology and Translational Medicine.2023; 57(1): 1.     CrossRef
  • A Standardized Pathology Report for Gastric Cancer: 2nd Edition
    Young Soo Park, Myeong-Cherl Kook, Baek-hui Kim, Hye Seung Lee, Dong-Wook Kang, Mi-Jin Gu, Ok Ran Shin, Younghee Choi, Wonae Lee, Hyunki Kim, In Hye Song, Kyoung-Mee Kim, Hee Sung Kim, Guhyun Kang, Do Youn Park, So-Young Jin, Joon Mee Kim, Yoon Jung Choi,
    Journal of Gastric Cancer.2023; 23(1): 107.     CrossRef
  • Korean Practice Guidelines for Gastric Cancer 2022: An Evidence-based, Multidisciplinary Approach
    Tae-Han Kim, In-Ho Kim, Seung Joo Kang, Miyoung Choi, Baek-Hui Kim, Bang Wool Eom, Bum Jun Kim, Byung-Hoon Min, Chang In Choi, Cheol Min Shin, Chung Hyun Tae, Chung sik Gong, Dong Jin Kim, Arthur Eung-Hyuck Cho, Eun Jeong Gong, Geum Jong Song, Hyeon-Su Im
    Journal of Gastric Cancer.2023; 23(1): 3.     CrossRef
  • Could Toll-like Receptor 2 Serve as Biomarker to Detect Advanced Gastric Cancer?
    Marek Majewski, Kamil Torres, Paulina Mertowska, Sebastian Mertowski, Izabela Korona-Głowniak, Jan Korulczyk, Witold Zgodziński, Ewelina Grywalska
    International Journal of Molecular Sciences.2023; 24(6): 5824.     CrossRef
  • Research Progress of Immunotherapy for Gastric Cancer
    Zhipeng Zhang, Ningning Liu, Mingyu Sun
    Technology in Cancer Research & Treatment.2023; 22: 153303382211505.     CrossRef
  • Case Report: A rare synchronous multiple gastric carcinoma achieved progression-free disease through NGS-guided serial treatment
    Xinyi Shao, Jin Yin, Di Wang, Erjiong Huang, Yini Zhang, Jiani C. Yin, Chen Huang, Hao Wu, Xiaoli Wu
    Frontiers in Oncology.2023;[Epub]     CrossRef
  • Artificial Intelligence-Enabled Gastric Cancer Interpretations
    Mustafa Yousif, Liron Pantanowitz
    Surgical Pathology Clinics.2023; 16(4): 673.     CrossRef
  • The Optimal Tumor Mutational Burden Cutoff Value as a Novel Marker for Predicting the Efficacy of Programmed Cell Death-1 Checkpoint Inhibitors in Advanced Gastric Cancer
    Jae Yeon Jang, Youngkyung Jeon, Sun Young Jeong, Sung Hee Lim, Won Ki Kang, Jeeyun Lee, Seung Tae Kim
    Journal of Gastric Cancer.2023; 23(3): 476.     CrossRef
  • Biomarkers for Predicting Response to Personalized Immunotherapy in Gastric Cancer
    Moonsik Kim, Ji Yun Jeong, An Na Seo
    Diagnostics.2023; 13(17): 2782.     CrossRef
  • The Prognostic Value of the Prognostic Nutritional Index in Patients with Advanced or Metastatic Gastric Cancer Treated with Immunotherapy
    Yuting Pan, Yue Ma, Guanghai Dai
    Nutrients.2023; 15(19): 4290.     CrossRef
  • Molecular classification of gastric cancer predicts survival in patients undergoing radical gastrectomy based on project HOPE
    Kenichiro Furukawa, Keiichi Hatakeyama, Masanori Terashima, Takeshi Nagashima, Kenichi Urakami, Keiichi Ohshima, Akifumi Notsu, Takashi Sugino, Taisuke Yagi, Keiichi Fujiya, Satoshi Kamiya, Makoto Hikage, Yutaka Tanizawa, Etsuro Bando, Yae Kanai, Yasuto A
    Gastric Cancer.2022; 25(1): 138.     CrossRef
  • Immunotherapy for gastric cancer: a 2021 update
    Christo Kole, Nikolaos Charalampakis, Sergios Tsakatikas, Nikolaos-Iasonas Kouris, George Papaxoinis, Michalis V Karamouzis, Anna Koumarianou, Dimitrios Schizas
    Immunotherapy.2022; 14(1): 41.     CrossRef
  • The immune microenvironment in gastric adenocarcinoma
    Yana Zavros, Juanita L. Merchant
    Nature Reviews Gastroenterology & Hepatology.2022; 19(7): 451.     CrossRef
  • Immunomodulation by Gut Microbiome on Gastrointestinal Cancers: Focusing on Colorectal Cancer
    Raghad Khalid AL-Ishaq, Lenka Koklesova, Peter Kubatka, Dietrich Büsselberg
    Cancers.2022; 14(9): 2140.     CrossRef
  • An Immunity-Associated lncRNA Signature for Predicting Prognosis in Gastric Adenocarcinoma
    Xiaowen Zhao, Pingfan Wu, Dongling Liu, Changtian Li, Ling Xue, Zhe Liu, Meng Zhu, Jie Yang, Ziyi Chen, Yaling Li, Yali She, Kathiravan Srinivasan
    Journal of Healthcare Engineering.2022; 2022: 1.     CrossRef
  • RNA modification writers influence tumor microenvironment in gastric cancer and prospects of targeted drug therapy
    Peng Song, Sheng Zhou, Xiaoyang Qi, Yuwen Jiao, Yu Gong, Jie Zhao, Haojun Yang, Zhifen Qian, Jun Qian, Liming Tang
    Journal of Bioinformatics and Computational Biology.2022;[Epub]     CrossRef
  • Identification of the three subtypes and the prognostic characteristics of stomach adenocarcinoma: analysis of the hypoxia-related long non-coding RNAs
    Zehua Fan, Yanqun Wang, Rong Niu
    Functional & Integrative Genomics.2022; 22(5): 919.     CrossRef
  • Complete Response of High Microsatellite Instability Gastric Cancer and Synchronous Microsatellite Stability Rectal Cancer
    Zachary E Hunzeker, Pooja Bhakta, Sindusha R Gudipally, Sri Bharathi Kavuri, Rohit Venkatesan, Chukwuyejulumafor Nwanze
    Cureus.2022;[Epub]     CrossRef
  • Immune Profiling in Gastric Cancer Reveals the Dynamic Landscape of Immune Signature Underlying Tumor Progression
    Yuhan Wei, Jianwei Zhang, Xueke Fan, Zhi Zheng, Xiaoyue Jiang, Dexi Chen, Yuting Lu, Yingrui Li, Miao Wang, Min Hu, Qi Du, Liuting Yang, Hongzhong Li, Yi Xiao, Yongfu Li, Jiangtao Jin, Deying Wang, Xiangliang Yuan, Qin Li
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Tumor vessel normalization and immunotherapy in gastric cancer
    Xianzhe Yu, Shan He, Jian Shen, Qiushi Huang, Peng Yang, Lin Huang, Dan Pu, Li Wang, Lu Li, Jinghua Liu, Zelong Liu, Lingling Zhu
    Therapeutic Advances in Medical Oncology.2022; 14: 175883592211101.     CrossRef
  • FN1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancers
    Han Wang, Junchang Zhang, Huan Li, Hong Yu, Songyao Chen, Shuhao Liu, Changhua Zhang, Yulong He
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Molecular Pathology of Gastric Cancer
    Moonsik Kim, An Na Seo
    Journal of Gastric Cancer.2022; 22(4): 264.     CrossRef
  • Bioinformatics Analysis and Structure of Gastric Cancer Prognosis Model Based on Lipid Metabolism and Immune Microenvironment
    Yongzhi Chen, Hongjun Yuan, Qian Yu, Jianyu Pang, Miaomiao Sheng, Wenru Tang
    Genes.2022; 13(9): 1581.     CrossRef
  • Clinical implications of interleukins-31, 32, and 33 in gastric cancer
    Qing-Hua Liu, Ji-Wei Zhang, Lei Xia, Steven G Wise, Brett David Hambly, Kun Tao, Shi-San Bao
    World Journal of Gastrointestinal Oncology.2022; 14(9): 1808.     CrossRef
  • Microbiota and the Immune System—Actors in the Gastric Cancer Story
    Marek Majewski, Paulina Mertowska, Sebastian Mertowski, Konrad Smolak, Ewelina Grywalska, Kamil Torres
    Cancers.2022; 14(15): 3832.     CrossRef
  • Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer
    Junping Zhang, Xiaoping Cai, Weifeng Cui, Zheng Wei
    Genes.2022; 13(10): 1786.     CrossRef
  • Common strategies for effective immunotherapy of gastroesophageal cancers using immune checkpoint inhibitors
    Shuang Ma, Fei Chen
    Pathology - Research and Practice.2022; 238: 154110.     CrossRef
  • High-level of intratumoral GITR+ CD4 T cells associate with poor prognosis in gastric cancer
    Shouyu Ke, Feng Xie, Yixian Guo, Jieqiong Chen, Zeyu Wang, Yimeng Yu, Haigang Geng, Danhua Xu, Xu Liu, Xiang Xia, Fengrong Yu, Chunchao Zhu, Zizhen Zhang, Gang Zhao, Bin Li, Wenyi Zhao
    iScience.2022; 25(12): 105529.     CrossRef
  • Characteristics of Adenosine-to-Inosine RNA editing-based subtypes and novel risk score for the prognosis and drug sensitivity in stomach adenocarcinoma
    Jingjing Pan, Xinyuan Gu, Jing Luo, Xinye Qian, Qiang Gao, Tianjie Li, Longying Ye, Chenlu Li
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Inhibition of NF‐κB is required for oleanolic acid to downregulate PD‐L1 by promoting DNA demethylation in gastric cancer cells
    Xirong Lu, Yuyi Li, Wei Yang, Minghao Tao, Yanmiao Dai, Jinkang Xu, Qianfei Xu
    Journal of Biochemical and Molecular Toxicology.2021;[Epub]     CrossRef
  • Prognostic Value of C-Reactive Protein to Albumin Ratio in Gastric Cancer: A Meta-Analysis
    Liang Yue, Yi Lu, Yulin Li, Yilin Wang
    Nutrition and Cancer.2021; 73(10): 1864.     CrossRef
  • Immunogenic characteristics of microsatellite instability‐low esophagogastric junction adenocarcinoma based on clinicopathological, molecular, immunological and survival analyses
    Yu Imamura, Tasuku Toihata, Ikumi Haraguchi, Yoko Ogata, Manabu Takamatsu, Aya Kuchiba, Norio Tanaka, Osamu Gotoh, Seiichi Mori, Yuichiro Nakashima, Eiji Oki, Masaki Mori, Yoshinao Oda, Kenichi Taguchi, Manabu Yamamoto, Masaru Morita, Naoya Yoshida, Hideo
    International Journal of Cancer.2021; 148(5): 1260.     CrossRef
  • Two Similar Signatures for Predicting the Prognosis and Immunotherapy Efficacy of Stomach Adenocarcinoma Patients
    Taohua Yue, Shuai Zuo, Jing Zhu, Shihao Guo, Zhihao Huang, Jichang Li, Xin Wang, Yucun Liu, Shanwen Chen, Pengyuan Wang
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Tumor microenvironment characterization in stage IV gastric cancer
    Feng Yang, Zhenbao Wang, Xianxue Zhang
    Bioscience Reports.2021;[Epub]     CrossRef
  • E2F2 inhibition induces autophagy via the PI3K/Akt/mTOR pathway in gastric cancer
    Hui Li, Shufen Zhao, Liwei Shen, Peige Wang, Shihai Liu, Yingji Ma, Zhiwei Liang, Gongjun Wang, Jing Lv, Wensheng Qiu
    Aging.2021; 13(10): 13626.     CrossRef
  • Chemoradiation induces upregulation of immunogenic cell death-related molecules together with increased expression of PD-L1 and galectin-9 in gastric cancer
    S. H. Petersen, L. F. Kua, S. Nakajima, W. P. Yong, K. Kono
    Scientific Reports.2021;[Epub]     CrossRef
  • Establishment of an Immune Cell Infiltration Score to Help Predict the Prognosis and Chemotherapy Responsiveness of Gastric Cancer Patients
    Quan Jiang, Jie Sun, Hao Chen, Chen Ding, Zhaoqing Tang, Yuanyuan Ruan, Fenglin Liu, Yihong Sun
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Microsatellite instability in Gastric Cancer: Between lights and shadows
    Elisabetta Puliga, Simona Corso, Filippo Pietrantonio, Silvia Giordano
    Cancer Treatment Reviews.2021; 95: 102175.     CrossRef
  • Survival-associated alternative splicing events interact with the immune microenvironment in stomach adenocarcinoma
    Zai-Sheng Ye, Miao Zheng, Qin-Ying Liu, Yi Zeng, Sheng-Hong Wei, Yi Wang, Zhi-Tao Lin, Chen Shu, Qiu-Hong Zheng, Lu-Chuan Chen
    World Journal of Gastroenterology.2021; 27(21): 2871.     CrossRef
  • Immunotherapy of gastric cancer: Past, future perspective and challenges
    Jun Xie, Liping Fu, Li Jin
    Pathology - Research and Practice.2021; 218: 153322.     CrossRef
  • Clinicopathologic and Prognostic Association of GRP94 Expression in Colorectal Cancer with Synchronous and Metachronous Metastases
    Sumi Yun, Sukmook Lee, Ho-Young Lee, Hyeon Jeong Oh, Yoonjin Kwak, Hye Seung Lee
    International Journal of Molecular Sciences.2021; 22(13): 7042.     CrossRef
  • Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages
    Yan Yang, Yang Yang, Meili Chen, Jianquan Chen, Jinyan Wang, Yajun Ma, Hanqing Qian
    Biomaterials Science.2021; 9(19): 6597.     CrossRef
  • Correlation between LRP1B Mutations and Tumor Mutation Burden in Gastric Cancer
    Sizhe Hu, Xiaokang Zhao, Feng Qian, Cancan Jin, Kaishun Hou, Tao Huang
    Computational and Mathematical Methods in Medicine.2021; 2021: 1.     CrossRef
  • Comprehensive Analysis to Identify MAGEA3 Expression Correlated With Immune Infiltrates and Lymph Node Metastasis in Gastric Cancer
    Jinji Jin, Jianxin Tu, Jiahuan Ren, Yiqi Cai, Wenjing Chen, Lifang Zhang, Qiyu Zhang, Guanbao Zhu
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Effect of P2X7 receptor on tumorigenesis and its pharmacological properties
    Wen-jun Zhang, Ce-gui Hu, Zheng-ming Zhu, Hong-liang Luo
    Biomedicine & Pharmacotherapy.2020; 125: 109844.     CrossRef
  • Current status and future potential of predictive biomarkers for immune checkpoint inhibitors in gastric cancer
    Byung Woog Kang, Ian Chau
    ESMO Open.2020; 5(4): e000791.     CrossRef
  • Is ramucirumab still the only second-line treatment in metastatic gastric cancer?
    Khalil El Gharib, Hampig Raphael Kourie
    Pharmacogenomics.2020; 21(17): 1203.     CrossRef
  • Deep Learning Predicts Underlying Features on Pathology Images with Therapeutic Relevance for Breast and Gastric Cancer
    Renan Valieris, Lucas Amaro, Cynthia Aparecida Bueno de Toledo Osório, Adriana Passos Bueno, Rafael Andres Rosales Mitrowsky, Dirce Maria Carraro, Diana Noronha Nunes, Emmanuel Dias-Neto, Israel Tojal da Silva
    Cancers.2020; 12(12): 3687.     CrossRef
Original Article
Interobserver Reproducibility of PD-L1 Biomarker in Non-small Cell Lung Cancer: A Multi-Institutional Study by 27 Pathologists
Sunhee Chang, Hyung Kyu Park, Yoon-La Choi, Se Jin Jang
J Pathol Transl Med. 2019;53(6):347-353.   Published online October 28, 2019
DOI: https://doi.org/10.4132/jptm.2019.09.29
  • 5,321 View
  • 196 Download
  • 24 Web of Science
  • 24 Crossref
AbstractAbstract PDF
Background
Assessment of programmed cell death-ligand 1 (PD-L1) immunohistochemical staining is used for treatment decisions in non-small cell lung cancer (NSCLC) regarding use of PD-L1/programmed cell death protein 1 (PD-1) immunotherapy. The reliability of the PD-L1 22C3 pharmDx assay is critical in guiding clinical practice. The Cardiopulmonary Pathology Study Group of the Korean Society of Pathologists investigated the interobserver reproducibility of PD-L1 staining with 22C3 pharmDx in NSCLC samples.
Methods
Twenty-seven pathologists individually assessed the tumor proportion score (TPS) for 107 NSCLC samples. Each case was divided into three levels based on TPS: <1%, 1%–49%, and ≥50%.
Results
The intraclass correlation coefficient for TPS was 0.902±0.058. Weighted κ coefficient for 3-step assessment was 0.748±0.093. The κ coefficients for 1% and 50% cut-offs were 0.633 and 0.834, respectively. There was a significant association between interobserver reproducibility and experience (formal PD-L1 training, more experience for PD-L1 assessment, and longer practice duration on surgical pathology), histologic subtype, and specimen type.
Conclusions
Our results indicate that PD-L1 immunohistochemical staining provides a reproducible basis for decisions on anti–PD-1 therapy in NSCLC.

Citations

Citations to this article as recorded by  
  • Weakly Supervised Deep Learning Predicts Immunotherapy Response in Solid Tumors Based on PD-L1 Expression
    Marta Ligero, Garazi Serna, Omar S.M. El Nahhas, Irene Sansano, Siarhei Mauchanski, Cristina Viaplana, Julien Calderaro, Rodrigo A. Toledo, Rodrigo Dienstmann, Rami S. Vanguri, Jennifer L. Sauter, Francisco Sanchez-Vega, Sohrab P. Shah, Santiago Ramón y C
    Cancer Research Communications.2024; 4(1): 92.     CrossRef
  • Concordance of assessments of four PD-L1 immunohistochemical assays in esophageal squamous cell carcinoma (ESCC)
    Xinran Wang, Jiankun He, Jinze Li, Chun Wu, Meng Yue, Shuyao Niu, Ying Jia, Zhanli Jia, Lijing Cai, Yueping Liu
    Journal of Cancer Research and Clinical Oncology.2024;[Epub]     CrossRef
  • Deep learning-based assay for programmed death ligand 1 immunohistochemistry scoring in non-small cell lung carcinoma: Does it help pathologists score?
    Hiroaki Ito, Akihiko Yoshizawa, Kazuhiro Terada, Akiyoshi Nakakura, Mariyo Rokutan-Kurata, Tatsuhiko Sugimoto, Kazuya Nishimura, Naoki Nakajima, Shinji Sumiyoshi, Masatsugu Hamaji, Toshi Menju, Hiroshi Date, Satoshi Morita, Ryoma Bise, Hironori Haga
    Modern Pathology.2024; : 100485.     CrossRef
  • Impact of Prolonged Ischemia on the Immunohistochemical Expression of Programmed Death Ligand 1 (PD-L1)
    Angels Barberà, Juan González, Montserrat Martin, Jose L. Mate, Albert Oriol, Fina Martínez-Soler, Tomas Santalucia, Pedro Luis Fernández
    Applied Immunohistochemistry & Molecular Morphology.2023; 31(9): 607.     CrossRef
  • A practical approach for PD-L1 evaluation in gastroesophageal cancer
    Valentina Angerilli, Matteo Fassan, Paola Parente, Irene Gullo, Michela Campora, Chiara Rossi, Maria Luisa Sacramento, Gianmaria Pennelli, Alessandro Vanoli, Federica Grillo, Luca Mastracci
    Pathologica.2023; 115(2): 57.     CrossRef
  • EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma
    Julia R. Naso, Julie A. Vrana, Justin W. Koepplin, Julian R. Molina, Anja C. Roden
    Cancers.2023; 15(8): 2274.     CrossRef
  • Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer
    Jianghua Wu, Changling Liu, Xiaoqing Liu, Wei Sun, Linfeng Li, Nannan Gao, Yajun Zhang, Xin Yang, Junjie Zhang, Haiyue Wang, Xinying Liu, Xiaozheng Huang, Yanhui Zhang, Runfen Cheng, Kaiwen Chi, Luning Mao, Lixin Zhou, Dongmei Lin, Shaoping Ling
    Modern Pathology.2022; 35(3): 403.     CrossRef
  • Immunohistochemistry as predictive and prognostic markers for gastrointestinal malignancies
    Matthew W. Rosenbaum, Raul S. Gonzalez
    Seminars in Diagnostic Pathology.2022; 39(1): 48.     CrossRef
  • Gastric Cancer: Mechanisms, Biomarkers, and Therapeutic Approaches
    Sangjoon Choi, Sujin Park, Hyunjin Kim, So Young Kang, Soomin Ahn, Kyoung-Mee Kim
    Biomedicines.2022; 10(3): 543.     CrossRef
  • Development and validation of a supervised deep learning algorithm for automated whole‐slide programmed death‐ligand 1 tumour proportion score assessment in non‐small cell lung cancer
    Liesbeth M Hondelink, Melek Hüyük, Pieter E Postmus, Vincent T H B M Smit, Sami Blom, Jan H von der Thüsen, Danielle Cohen
    Histopathology.2022; 80(4): 635.     CrossRef
  • 5-hmC loss is another useful tool in addition to BAP1 and MTAP immunostains to distinguish diffuse malignant peritoneal mesothelioma from reactive mesothelial hyperplasia in peritoneal cytology cell-blocks and biopsies
    Ziyad Alsugair, Vahan Kepenekian, Tanguy Fenouil, Olivier Glehen, Laurent Villeneuve, Sylvie Isaac, Juliette Hommell-Fontaine, Nazim Benzerdjeb
    Virchows Archiv.2022; 481(1): 23.     CrossRef
  • Artificial intelligence–powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non–small cell lung cancer with better prediction of immunotherapy response
    Sangjoon Choi, Soo Ick Cho, Minuk Ma, Seonwook Park, Sergio Pereira, Brian Jaehong Aum, Seunghwan Shin, Kyunghyun Paeng, Donggeun Yoo, Wonkyung Jung, Chan-Young Ock, Se-Hoon Lee, Yoon-La Choi, Jin-Haeng Chung, Tony S. Mok, Hyojin Kim, Seokhwi Kim
    European Journal of Cancer.2022; 170: 17.     CrossRef
  • Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer
    Guoping Cheng, Fuchuang Zhang, Yishi Xing, Xingyi Hu, He Zhang, Shiting Chen, Mengdao Li, Chaolong Peng, Guangtai Ding, Dadong Zhang, Peilin Chen, Qingxin Xia, Meijuan Wu
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab
    Vipul Baxi, George Lee, Chunzhe Duan, Dimple Pandya, Daniel N. Cohen, Robin Edwards, Han Chang, Jun Li, Hunter Elliott, Harsha Pokkalla, Benjamin Glass, Nishant Agrawal, Abhik Lahiri, Dayong Wang, Aditya Khosla, Ilan Wapinski, Andrew Beck, Michael Montalt
    Modern Pathology.2022; 35(11): 1529.     CrossRef
  • High interobserver and intraobserver reproducibility among pathologists assessing PD‐L1 CPS across multiple indications
    Shanthy Nuti, Yiwei Zhang, Nabila Zerrouki, Charlotte Roach, Gudrun Bänfer, George L Kumar, Edward Manna, Rolf Diezko, Kristopher Kersch, Josef Rüschoff, Bharat Jasani
    Histopathology.2022; 81(6): 732.     CrossRef
  • Modifying factors of PD‐L1 expression on tumor cells in advanced non‐small‐cell lung cancer
    Alejandro Avilés‐Salas, Diana Flores‐Estrada, Luis Lara‐Mejía, Rodrigo Catalán, Graciela Cruz‐Rico, Mario Orozco‐Morales, David Heredia, Laura Bolaño‐Guerra, Pamela Denisse Soberanis‐Piña, Edgar Varela‐Santoyo, Andrés F. Cardona, Oscar Arrieta
    Thoracic Cancer.2022; 13(23): 3362.     CrossRef
  • Comparability of laboratory-developed and commercial PD-L1 assays in non-small cell lung carcinoma
    Julia R. Naso, Gang Wang, Norbert Banyi, Fatemeh Derakhshan, Aria Shokoohi, Cheryl Ho, Chen Zhou, Diana N. Ionescu
    Annals of Diagnostic Pathology.2021; 50: 151590.     CrossRef
  • Interobserver agreement in programmed cell death‐ligand 1 immunohistochemistry scoring in nonsmall cell lung carcinoma cytologic specimens
    William Sinclair, Peter Kobalka, Rongqin Ren, Boulos Beshai, Abberly A. Lott Limbach, Lai Wei, Ping Mei, Zaibo Li
    Diagnostic Cytopathology.2021; 49(2): 219.     CrossRef
  • Automated PD-L1 Scoring for Non-Small Cell Lung Carcinoma Using Open-Source Software
    Julia R. Naso, Tetiana Povshedna, Gang Wang, Norbert Banyi, Calum MacAulay, Diana N. Ionescu, Chen Zhou
    Pathology and Oncology Research.2021;[Epub]     CrossRef
  • The Immunohistochemical Expression of Programmed Death Ligand 1 (PD-L1) Is Affected by Sample Overfixation
    Angels Barberà, Ruth Marginet Flinch, Montserrat Martin, Jose L. Mate, Albert Oriol, Fina Martínez-Soler, Tomas Santalucia, Pedro L. Fernández
    Applied Immunohistochemistry & Molecular Morphology.2021; 29(1): 76.     CrossRef
  • Programmed cell death-ligand 1 assessment in urothelial carcinoma: prospect and limitation
    Kyu Sang Lee, Gheeyoung Choe
    Journal of Pathology and Translational Medicine.2021; 55(3): 163.     CrossRef
  • Comparison of Semi-Quantitative Scoring and Artificial Intelligence Aided Digital Image Analysis of Chromogenic Immunohistochemistry
    János Bencze, Máté Szarka, Balázs Kóti, Woosung Seo, Tibor G. Hortobágyi, Viktor Bencs, László V. Módis, Tibor Hortobágyi
    Biomolecules.2021; 12(1): 19.     CrossRef
  • Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas
    Federica Riccardo, Giuseppina Barutello, Angela Petito, Lidia Tarone, Laura Conti, Maddalena Arigoni, Chiara Musiu, Stefania Izzo, Marco Volante, Dario Livio Longo, Irene Fiore Merighi, Mauro Papotti, Federica Cavallo, Elena Quaglino
    Vaccines.2020; 8(2): 166.     CrossRef
  • Utility of PD-L1 testing on non-small cell lung cancer cytology specimens: An institutional experience with interobserver variability analysis
    Oleksandr Kravtsov, Christopher P. Hartley, Yuri Sheinin, Bryan C. Hunt, Juan C. Felix, Tamara Giorgadze
    Annals of Diagnostic Pathology.2020; 48: 151602.     CrossRef
Review
PD-L1 Testing in Non-small Cell Lung Cancer: Past, Present, and Future
Hyojin Kim, Jin-Haeng Chung
J Pathol Transl Med. 2019;53(4):199-206.   Published online May 2, 2019
DOI: https://doi.org/10.4132/jptm.2019.04.24
Correction in: J Pathol Transl Med 2020;54(2):196
  • 13,852 View
  • 621 Download
  • 54 Web of Science
  • 50 Crossref
AbstractAbstract PDF
Blockade of the programmed cell death-1 (PD-1) axis has already been established as an effective treatment of non-small cell lung cancer. Immunohistochemistry (IHC) for programmed death-ligand 1 (PD-L1) protein is the only available biomarker that can guide treatment with immune checkpoint inhibitors in non-small cell lung cancer. Because each PD-1/PD-L1 blockade was approved together with a specific PD-L1 IHC assay used in the clinical trials, pathologists have been challenged with performing various assays with a limited sample. To provide a more unified understanding of this, several cross-validation studies between platforms have been performed and showed consistent results. However, the interchangeability of assays may be limited in practice because of the risk of misclassification of patients for the treatment. Furthermore, several issues, including the temporal and spatial heterogeneity of PD-L1 expression in the tumor, and the potential for cytology specimens to be used as an alternative to tissue samples for PD-L1 testing, have still not been resolved. In the future, one of the main aims of immunotherapy research should be to find a novel predictive biomarker for PD-1 blockade therapy and a way to combine it with PD-L1 IHC and other tests.

Citations

Citations to this article as recorded by  
  • Precision Oncology in Lung Cancer Surgery
    Patrick Bou-Samra, Sunil Singhal
    Surgical Oncology Clinics of North America.2024; 33(2): 311.     CrossRef
  • Expression of PD-L1 clones (22C3 and 28-8) in hepatocellular carcinoma: a tertiary cancer care hospital experience
    Kashif Asghar, Shaarif Bashir, Muhammad Hassan, Asim Farooq, Muhammad Abu Bakar, Sundus Bilal, Maryam Hameed, Shafqat Mehmood, Asif Loya
    Egyptian Liver Journal.2024;[Epub]     CrossRef
  • Engineering Proteus mirabilis improves antitumor efficacy via enhancing cytotoxic T cell responses
    Hong Zhang, Yinlin Luo, Xincheng Zhao, Xiande Liu
    Molecular Therapy: Oncology.2024; 32(1): 200770.     CrossRef
  • Unlocking the potential of oncology biomarkers: advancements in clinical theranostics
    Ankit Kumar Dubey, Ishnoor Kaur, Reecha Madaan, Shikha Raheja, Rajni Bala, Manoj Garg, Suresh Kumar, Viney Lather, Vineet Mittal, Deepti Pandita, Rohit Gundamaraju, Rajeev K. Singla, Rohit Sharma
    Drug Metabolism and Personalized Therapy.2024; 39(1): 5.     CrossRef
  • Exploring histological predictive biomarkers for immune checkpoint inhibitor therapy response in non–small cell lung cancer
    Uiju Cho, Soyoung Im, Hyung Soon Park
    Journal of Pathology and Translational Medicine.2024; 58(2): 49.     CrossRef
  • Predicting efficacy assessment of combined treatment of radiotherapy and nivolumab for NSCLC patients through virtual clinical trials using QSP modeling
    Miriam Schirru, Hamza Charef, Khalil-Elmehdi Ismaili, Frédérique Fenneteau, Didier Zugaj, Pierre-Olivier Tremblay, Fahima Nekka
    Journal of Pharmacokinetics and Pharmacodynamics.2024;[Epub]     CrossRef
  • Predictions of PD-L1 Expression Based on CT Imaging Features in Lung Squamous Cell Carcinoma
    Seong Hee Yeo, Hyun Jung Yoon, Injoong Kim, Yeo Jin Kim, Young Lee, Yoon Ki Cha, So Hyeon Bak
    Journal of the Korean Society of Radiology.2024; 85(2): 394.     CrossRef
  • Special issue “The advance of solid tumor research in China”: FGFR4 alterations predict efficacy of immune checkpoint inhibitors in nonsmall cell lung cancer
    Guanghui Gao, Longgang Cui, Fei Zhou, Tao Jiang, Wanying Wang, Shiqi Mao, Fengying Wu, Fangli Jiang, Bei Zhang, Ting Bei, Wenchuan Xie, Cheng Zhang, Hougang Zhang, Chan Gao, Xiaochen Zhao, Yuezong Bai, Caicun Zhou, Shengxiang Ren
    International Journal of Cancer.2023; 152(1): 79.     CrossRef
  • Molecular Classification of Extrapulmonary Neuroendocrine Carcinomas With Emphasis on POU2F3-positive Tuft Cell Carcinoma
    Jiwon Koh, Haeryoung Kim, Kyung Chul Moon, Cheol Lee, Kyoungbun Lee, Han Suk Ryu, Kyeong Cheon Jung, Yoon Kyung Jeon
    American Journal of Surgical Pathology.2023; 47(2): 183.     CrossRef
  • Biomarkers for Predicting Response to Personalized Immunotherapy in Gastric Cancer
    Moonsik Kim, Ji Yun Jeong, An Na Seo
    Diagnostics.2023; 13(17): 2782.     CrossRef
  • PD-L1 Expression in Pituitary Neuroendocrine Tumors/Pituitary Adenomas
    Giulia Cossu, Stefano La Rosa, Jean Philippe Brouland, Nelly Pitteloud, Ethan Harel, Federico Santoni, Maxime Brunner, Roy Thomas Daniel, Mahmoud Messerer
    Cancers.2023; 15(18): 4471.     CrossRef
  • Prognostic Significance of Programmed Cell Death Ligand 1 Expression in High-Grade Serous Ovarian Carcinoma: A Systematic Review and Meta-Analysis
    Jeongwan Kang, Kang Min Han, Hera Jung, Hyunchul Kim
    Diagnostics.2023; 13(20): 3258.     CrossRef
  • A targeted expression panel for classification, gene fusion detection and PD-L1 measurements – Can molecular profiling replace immunohistochemistry in non-small cell lung cancer?
    Anita Tranberg Simonsen, Amalie Utke, Johanne Lade-Keller, Lasse Westphal Thomsen, Torben Steiniche, Magnus Stougaard
    Experimental and Molecular Pathology.2022; 125: 104749.     CrossRef
  • Program death ligand‐1 immunocytochemistry in lung cancer cytological samples: A systematic review
    Swati Satturwar, Ilaria Girolami, Enrico Munari, Francesco Ciompi, Albino Eccher, Liron Pantanowitz
    Diagnostic Cytopathology.2022; 50(6): 313.     CrossRef
  • Computer-assisted three-dimensional quantitation of programmed death-ligand 1 in non-small cell lung cancer using tissue clearing technology
    Yen-Yu Lin, Lei-Chi Wang, Yu-Han Hsieh, Yu-Ling Hung, Yung-An Chen, Yu-Chieh Lin, Yen-Yin Lin, Teh-Ying Chou
    Journal of Translational Medicine.2022;[Epub]     CrossRef
  • Correlation Between Pretreatment Neutrophil-to-Lymphocyte Ratio and Programmed Death-Ligand 1 Expression as Prognostic Markers in Non-Small Cell Lung Cancer
    Cristina-Florina Pirlog, Horia Teodor Cotan, Andreea Parosanu, Cristina Orlov Slavu, Ana Maria Popa, Cristian Iaciu, Mihaela Olaru, Alexandru Vlad Oprita, Irina Nita, Cornelia Nitipir
    Cureus.2022;[Epub]     CrossRef
  • Expert opinion on NSCLC small specimen biomarker testing — Part 2: Analysis, reporting, and quality assessment
    Frédérique Penault-Llorca, Keith M. Kerr, Pilar Garrido, Erik Thunnissen, Elisabeth Dequeker, Nicola Normanno, Simon J. Patton, Jenni Fairley, Joshua Kapp, Daniëlle de Ridder, Aleš Ryška, Holger Moch
    Virchows Archiv.2022; 481(3): 351.     CrossRef
  • Novel Inflammasome-Based Risk Score for Predicting Survival and Efficacy to Immunotherapy in Early-Stage Non-Small Cell Lung Cancer
    Chih-Cheng Tsao, Hsin-Hung Wu, Ying-Fu Wang, Po-Chien Shen, Wen-Ting Wu, Huang-Yun Chen, Yang-Hong Dai
    Biomedicines.2022; 10(7): 1539.     CrossRef
  • Comparative Analysis of Mutation Status and Immune Landscape for Squamous Cell Carcinomas at Different Anatomical sites
    Wenqi Ti, Tianhui Wei, Jianbo Wang, Yufeng Cheng
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Pan-cancer analysis of the angiotensin II receptor-associated protein as a prognostic and immunological gene predicting immunotherapy responses in pan-cancer
    Kai Hong, Yingjue Zhang, Lingli Yao, Jiabo Zhang, Xianneng Sheng, Lihua Song, Yu Guo, Yangyang Guo
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Molecular imaging of immune checkpoints in oncology: Current and future applications
    Shushan Ge, Tongtong Jia, Jihui Li, Bin Zhang, Shengming Deng, Shibiao Sang
    Cancer Letters.2022; 548: 215896.     CrossRef
  • PD-L1 expression and association with genetic background in pheochromocytoma and paraganglioma
    Katerina Hadrava Vanova, Ondrej Uher, Leah Meuter, Suman Ghosal, Sara Talvacchio, Mayank Patel, Jiri Neuzil, Karel Pacak
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Case report: Variable response to immunotherapy in ovarian cancer: Our experience within the current state of the art
    Nicoletta Provinciali, Marco Greppi, Silvia Pesce, Mariangela Rutigliani, Irene Maria Briata, Tania Buttiron Webber, Marianna Fava, Andrea DeCensi, Emanuela Marcenaro
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • PD-L1 Is Preferentially Expressed in PIT-1 Positive Pituitary Neuroendocrine Tumours
    John Turchini, Loretta Sioson, Adele Clarkson, Amy Sheen, Anthony J. Gill
    Endocrine Pathology.2021; 32(3): 408.     CrossRef
  • Comprehensive tumor molecular profile analysis in clinical practice
    Mustafa Özdoğan, Eirini Papadopoulou, Nikolaos Tsoulos, Aikaterini Tsantikidi, Vasiliki-Metaxa Mariatou, Georgios Tsaousis, Evgenia Kapeni, Evgenia Bourkoula, Dimitrios Fotiou, Georgios Kapetsis, Ioannis Boukovinas, Nikolaos Touroutoglou, Athanasios Fassa
    BMC Medical Genomics.2021;[Epub]     CrossRef
  • CT-Based Hand-crafted Radiomic Signatures Can Predict PD-L1 Expression Levels in Non-small Cell Lung Cancer: a Two-Center Study
    Zekun Jiang, Yinjun Dong, Linke Yang, Yunhong Lv, Shuai Dong, Shuanghu Yuan, Dengwang Li, Liheng Liu
    Journal of Digital Imaging.2021; 34(5): 1073.     CrossRef
  • Deep Learning of Histopathological Features for the Prediction of Tumour Molecular Genetics
    Pierre Murchan, Cathal Ó’Brien, Shane O’Connell, Ciara S. McNevin, Anne-Marie Baird, Orla Sheils, Pilib Ó Broin, Stephen P. Finn
    Diagnostics.2021; 11(8): 1406.     CrossRef
  • Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic
    David Leung, Samuel Bonacorsi, Ralph Adam Smith, Wolfgang Weber, Wendy Hayes
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • A comparative study of immunotherapy as second-line treatment and beyond in patients with advanced non-small-cell lung carcinoma
    Jerónimo Rafael Rodríguez-Cid, Sonia Carrasco-Cara Chards, Iván Romarico González-Espinoza, Vanessa García-Montes, Julio César Garibay-Díaz, Osvaldo Hernández-Flores, Rodrigo Riera-Sala, Anna Gozalishvili-Boncheva, Jorge Arturo Alatorre-Alexander, Luis Ma
    Lung Cancer Management.2021;[Epub]     CrossRef
  • Clinical utility of the C‐reactive protein:albumin ratio in non‐small cell lung cancer patients treated with nivolumab
    Taisuke Araki, Kazunari Tateishi, Kei Sonehara, Shuko Hirota, Masamichi Komatsu, Manabu Yamamoto, Shintaro Kanda, Hiroshi Kuraishi, Masayuki Hanaoka, Tomonobu Koizumi
    Thoracic Cancer.2021; 12(5): 603.     CrossRef
  • Programmed Cell Death Ligand 1-Transfected Mouse Bone Marrow Mesenchymal Stem Cells as Targeted Therapy for Rheumatoid Arthritis
    Qiong-ying Hu, Yun Yuan, Yu-chen Li, Lu-yao Yang, Xiang-yu Zhou, Da-qian Xiong, Zi-yi Zhao, Hiroshi Tanaka
    BioMed Research International.2021; 2021: 1.     CrossRef
  • PD-L1 testing and clinical management of newly diagnosed metastatic non-small cell lung cancer in Spain: MOREL study
    Belen Rubio-Viqueira, Margarita Majem Tarruella, Martín Lázaro, Sergio Vázquez Estévez, Juan Felipe Córdoba-Ortega, Inmaculada Maestu Maiques, Jorge García González, Ana Blasco Cordellat, Javier Valdivia-Bautista, Carmen González Arenas, Jose Miguel Sánch
    Lung Cancer Management.2021;[Epub]     CrossRef
  • Can Systems Biology Advance Clinical Precision Oncology?
    Andrea Rocca, Boris N. Kholodenko
    Cancers.2021; 13(24): 6312.     CrossRef
  • Do we need PD‐L1 as a biomarker for thyroid cytologic and histologic specimens?
    Marc P. Pusztaszeri, Massimo Bongiovanni, Fadi Brimo
    Cancer Cytopathology.2020; 128(3): 160.     CrossRef
  • Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment
    Andrea Botticelli, Pamela Vernocchi, Federico Marini, Andrea Quagliariello, Bruna Cerbelli, Sofia Reddel, Federica Del Chierico, Francesca Di Pietro, Raffaele Giusti, Alberta Tomassini, Ottavia Giampaoli, Alfredo Miccheli, Ilaria Grazia Zizzari, Marianna
    Journal of Translational Medicine.2020;[Epub]     CrossRef
  • Immune checkpoint inhibitors in advanced non–small cell lung cancer: A metacentric experience from India
    Santosh Kumar, Srujana Joga, Bivas Biswas, Deepak Dabkara, Kuruswamy Thurai Prasad, Navneet Singh, Prabhat Singh Malik, Sachin Khurana, Sandip Ganguly, Valliappan Muthu, Ullas Batra
    Current Problems in Cancer.2020; 44(3): 100549.     CrossRef
  • Utility of CT radiomics for prediction of PD‐L1 expression in advanced lung adenocarcinomas
    Jiyoung Yoon, Young Joo Suh, Kyunghwa Han, Hyoun Cho, Hye‐Jeong Lee, Jin Hur, Byoung Wook Choi
    Thoracic Cancer.2020; 11(4): 993.     CrossRef
  • Immune checkpoint inhibitors of the PD-1/PD-L1-axis in non-small cell lung cancer: promise, controversies and ambiguities in the novel treatment paradigm
    Lars H. Breimer, Petros Nousios, Louise Olsson, Hans Brunnström
    Scandinavian Journal of Clinical and Laboratory Investigation.2020; 80(5): 360.     CrossRef
  • Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts
    Jean-David Fumet, Caroline Truntzer, Mark Yarchoan, Francois Ghiringhelli
    European Journal of Cancer.2020; 131: 40.     CrossRef
  • Precision Medicine for NSCLC in the Era of Immunotherapy: New Biomarkers to Select the Most Suitable Treatment or the Most Suitable Patient
    Giovanni Rossi, Alessandro Russo, Marco Tagliamento, Alessandro Tuzi, Olga Nigro, Giacomo Vallome, Claudio Sini, Massimiliano Grassi, Maria Giovanna Dal Bello, Simona Coco, Luca Longo, Lodovica Zullo, Enrica Teresa Tanda, Chiara Dellepiane, Paolo Pronzato
    Cancers.2020; 12(5): 1125.     CrossRef
  • Current status and future perspectives of liquid biopsy in non-small cell lung cancer
    Sunhee Chang, Jae Young Hur, Yoon-La Choi, Chang Hun Lee, Wan Seop Kim
    Journal of Pathology and Translational Medicine.2020; 54(3): 204.     CrossRef
  • Digital Pathology and PD-L1 Testing in Non Small Cell Lung Cancer: A Workshop Record
    Fabio Pagni, Umberto Malapelle, Claudio Doglioni, Gabriella Fontanini, Filippo Fraggetta, Paolo Graziano, Antonio Marchetti, Elena Guerini Rocco, Pasquale Pisapia, Elena V. Vigliar, Fiamma Buttitta, Marta Jaconi, Nicola Fusco, Massimo Barberis, Giancarlo
    Cancers.2020; 12(7): 1800.     CrossRef
  • PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy
    Ana Bocanegra, Ester Blanco, Gonzalo Fernandez-Hinojal, Hugo Arasanz, Luisa Chocarro, Miren Zuazo, Pilar Morente, Ruth Vera, David Escors, Grazyna Kochan
    International Journal of Molecular Sciences.2020; 21(16): 5918.     CrossRef
  • PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer
    Danny Rischin, Marta Gil-Martin, Antonio González-Martin, Irene Braña, June Y. Hou, Daniel Cho, Gerald S. Falchook, Silvia Formenti, Salma Jabbour, Kathleen Moore, Aung Naing, Kyriakos P. Papadopoulos, Joaquina Baranda, Wen Fury, Minjie Feng, Elizabeth St
    Gynecologic Oncology.2020; 159(2): 322.     CrossRef
  • Atezolizumab: A Review in Extensive-Stage SCLC
    James E. Frampton
    Drugs.2020; 80(15): 1587.     CrossRef
  • Prognostic and clinicopathological roles of programmed death‐ligand 1 (PD‐L1) expression in thymic epithelial tumors: A meta‐analysis
    Hyun Min Koh, Bo Gun Jang, Hyun Ju Lee, Chang Lim Hyun
    Thoracic Cancer.2020; 11(11): 3086.     CrossRef
  • Präzisionsmedizin bei NSCLC im Zeitalter der Immuntherapie: Neue Biomarker zur Selektion der am besten geeigneten Therapie oder des am besten geeigneten Patienten
    Giovanni Rossi, Alessandro Russo, Marco Tagliamento, Alessandro Tuzi, Olga Nigro, Giacomo Vollome, Claudio Sini, Massimiliano Grassi, Maria Giovanna Dal Bello, Simona Coco, Luca Longo, Lodovica Zullo, Enrica Teresa Tanda, Chiara Dellepiane, Paolo Pronzato
    Kompass Pneumologie.2020; 8(6): 300.     CrossRef
  • Association with PD-L1 Expression and Clinicopathological Features in 1000 Lung Cancers: A Large Single-Institution Study of Surgically Resected Lung Cancers with a High Prevalence of EGFR Mutation
    Lee, Kim, Sung, Lee, Han, Kim, Choi
    International Journal of Molecular Sciences.2019; 20(19): 4794.     CrossRef
  • Detailed Characterization of Immune Cell Infiltrate and Expression of Immune Checkpoint Molecules PD-L1/CTLA-4 and MMR Proteins in Testicular Germ Cell Tumors Disclose Novel Disease Biomarkers
    João Lobo, Ângelo Rodrigues, Rita Guimarães, Mariana Cantante, Paula Lopes, Joaquina Maurício, Jorge Oliveira, Carmen Jerónimo, Rui Henrique
    Cancers.2019; 11(10): 1535.     CrossRef
  • Basis of PD1/PD-L1 Therapies
    Barbara Seliger
    Journal of Clinical Medicine.2019; 8(12): 2168.     CrossRef
Original Article
Human Leukocyte Antigen Class I and Programmed Death-Ligand 1 Coexpression Is an Independent Poor Prognostic Factor in Adenocarcinoma of the Lung
Yeon Bi Han, Hyun Jung Kwon, Soo Young Park, Eun-Sun Kim, Hyojin Kim, Jin-Haeng Chung
J Pathol Transl Med. 2019;53(2):86-93.   Published online January 14, 2019
DOI: https://doi.org/10.4132/jptm.2018.12.26
  • 5,439 View
  • 131 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract PDF
Background
Both human leukocyte antigen (HLA) class I and programmed death-ligand 1 (PD-L1) molecules are known to play important roles in cancer immunity. In this study, we evaluated HLA class I expression in resected adenocarcinoma of the lung, and investigated its prognostic impact in correlation with PD-L1 expression.
Methods
HLA class I and PD-L1 expression was evaluated by immunohistochemistry in a total of 403 resected lung adenocarcinomas using tissue microarray. Correlations between the expression of HLA class I/PD-L1 and clinicopathologic features and prognostic significance were analyzed.
Results
HLA class I expression was reduced in 91.6% of adenocarcinoma, and more frequently reduced in patients with younger age, absence of vascular invasion, and low pathologic stage (p = .033, p = .007, and p = .012, respectively). Positive PD-L1 expression in tumor cells was 16.1% (1% cut-off), and associated with poor differentiation, presence of vascular invasion and nodal metastasis (p < .001, p = .002, and p = .032, respectively). On survival analysis, HLA class I or PD-L1 expression alone did not show any statistical significance. On the integrated analysis, HLA class I (+)/PD-L1 (+) subgroup showed a significantly shorter overall survival than other groups (p = .001). Multivariate analysis revealed that coexpression of HLA class I and PD-L1 was an independent poor prognostic factor of lung adenocarcinoma. (p < .001; hazard ratio, 6.106; 95% confidence interval, 2.260 to 16.501).
Conclusions
Lung adenocarcinoma with coexpression of HLA class I and PD-L1 was associated with poor prognosis. This subgroup may evade immune attack by expressing PD-L1 protein despite HLA expression.

Citations

Citations to this article as recorded by  
  • Prognostic and Clinical Significance of Human Leukocyte Antigen Class I Expression in Breast Cancer: A Meta-Analysis
    Weiqiang Qiao, Zhiqiang Jia, Wanying Guo, Qipeng Liu, Xiao Guo, Miao Deng
    Molecular Diagnosis & Therapy.2023; 27(5): 573.     CrossRef
  • Loss of HLA-class-I expression in non-small-cell lung cancer: Association with prognosis and anaerobic metabolism
    Ioannis M. Koukourakis, Alexandra Giatromanolaki, Achilleas Mitrakas, Michael I. Koukourakis
    Cellular Immunology.2022; 373: 104495.     CrossRef

J Pathol Transl Med : Journal of Pathology and Translational Medicine