Uterus-like masses, such as cavities lined by endometrium-type mucosa surrounded by bundles of smooth muscle cells, may strikingly resemble the uterus. In this report, we describe a case of a uterus-like mass with features of an extrauterine adenomyoma in a 42-year-old woman. The first uterine-like mass was documented by Cozzutto in 1981 and to date, 13 such cases have been reported. Three theories have been offered to explain their etiology: 1) the uterine/Mullerian duct fusion defect theory, which is based on a developmental abnormality occurring during the formation of the female genital tract, 2) the metaplastic theory, which is based on the fact that a uterus-like mass may arise from subperitoneal mesenchymal cells that retain the ability to duplicate Mullerian duct structures, and 3) the heterotopia theory. We consider that the metaplastic theory best fits with our observations in the present case as both glandular and stromal smooth muscle cells proliferated as a true neoplasm rather than as an anomaly.

Key Words : Adenomyoma; Endometriosis; Pelvic region

Mi Jin Kim • Sang Hee Seok
Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea

Received : March 6, 2007
Accepted : May 23, 2007

Corresponding Author
Mi Jin Kim, M.D.
Department of Pathology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Nam-gu, Daegu 705-717, Korea
Tel: 053-620-3334
Fax: 053-622-8432
E-mail: mjkap@ynu.ac.kr

Uterus-like masses are composed of endometrial tissue and smooth muscle, and histologically resemble the uterus. Most arise within the ovary, but extraovarian cases have been described. Cozzutto in 1981 suggested that this lesion originates from ovarian stromal cells that have undergone smooth muscle cell metaplasia during endometriosis. To date, 13 cases of uterine-like masses have been reported in the English literature, but the histogenesis of these masses is controversial. In this report, we report a case of a uterus-like mass in the pelvic cavity, and review the relevant literature.

CASE REPORT

A 42-year-old woman complained of lower abdominal pain of 4 days duration. Pelvic computed tomography (CT) at a local clinic revealed a well defined lobulated cystic mass with multiple septations in the pelvic cavity. The obstetrical history of this patient was 3 gravida, 2 parity, 1 artificial abortion, and 2 cesarean sections. Her serum CA125 level was elevated (269.09 U/mL). At surgery, a 10.5 × 9.5 cm sized mass was located in periadnexal area between the sigmoid colon and posterior fundus of the uterus with attachment to these organs. The mass was grossly well circumscribed and had variably sized cystic spaces surrounded by a thick layer of smooth muscle. The cystic portion looked like endometrium and contained dark brown viscous material, and its inner surface was coated by multiple adherent blood clots.

Microscopically, the mass was composed of a thick muscular cyst wall lined with benign endometrial glands and endometrial stroma with an arrangement resembling endometrium (Fig. 1). The endometrial glands had proliferative to hyperplastic features (Fig. 2A, B) and the cystic wall consisted of thickened smooth muscle bundles that resembled myometrium (Fig. 2C).

Immunohistochemical analysis was performed on 10% formalin-fixed, paraffin-embedded sections using the following antibodies; cytokeratin (AE1/AE3) (1:50, DAKO, Glostrup, Denmark), epithelial membrane antigen (EMA) (E29, 1:60, DAKO, Glostrup, Denmark), antihuman mesothelial cell (HBME-1) (1:40, DAKO, Glostrup, Denmark), S-100 (1:150, Zymed, San Francisco, CA, USA), vimentin (1:150, Zymed, San Francisco, CA, USA), desmin (ZC18, 1:60, Zymed, San Francisco, CA, USA), smooth muscle actin (SMA) (1A4, 1:40, DAKO, Glostrup, Denmark), estrogen receptor (ER) (1:50, Zymed, San Francisco, CA, USA), and progesterone receptor (PR) (1:60, Zymed, San Francisco, CA, USA).
cells were positive for cytokeratin (AE1/AE3), EMA, HBME-1, ER, and PR, endometrial stromal cells were positive for SMA, vimentin, HBME-1, ER, and PR and myometrial components were positive for SMA, desmin, vimentin, HBME-1, ER, and PR (Table 1, Fig. 3).

Based on these findings, the lesion was diagnosed as a uterus-like mass.

DISCUSSION

Uterus-like masses are a rare entity of uncertain histogenesis. Most arise within the ovary, but extraovarian cases have been described. Uterus-like masses should be differentiated from adenomyomas, which lack a uterus-like organization. The first uterine-like mass was documented by Cozzutto in 1981. He described a mass originating from stromal cells due to smooth muscle cell metaplasia, possibly due to the effect of estrogen. Fibroblasts and smooth muscle cells appear to be closely related to myofibroblasts, and possibly participate in the transitional stage. To date, 13 cases of uterus-like mass have been reported (Table 2). A review of these cases and the present case showed that all occurred in women aged 11 to 59 years (average age 35 years). Mass sizes ranged from 2.5 to 16 cm with an average of 8 cm. Nine cases presented with complaints of lower abdomi-

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Reactivity</th>
<th>Endometrial glandular cells</th>
<th>Endometrial stromal cells</th>
<th>Myometrial component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokeratin (AE1/AE3)</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Epithelial membrane antigen (EMA)</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Anthuman mesothelial cell (HBME-1)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vimentin</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Smooth muscle actin (SMA)</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Desmin</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S-100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Estrogen receptor (ER)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Progesterone receptor (PR)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1. Immunohistochemical findings of periadnexal mass

Fig. 1. The periadnexal mass showing a cavity lined by endometrium-type mucosa surrounded by bundles of smooth muscle cells, resembling the uterus.

Fig. 2. (A) Proliferative, (B) hyperplastic endometrial glands, and (C) thickened smooth muscle bundles appearing similar to myometrium (× 100, H&E stain).
inal pain with/without bleeding, three cases were found incidentally during surgery or follow-up, one case presented as a palpable mass, and another presented with paresthesia and weakness of the legs. All 14 cases involved thick muscular walled masses with a central cavity or multicystic space, resembling a uterus. Eight cases arose from the ovary, and six cases from extraovarian regions, including the broad ligament, the small intestine, the small bowel mesentery, the conus medullaris, and the periaudnexal region. To our knowledge, the present lesion is the first case of a uterus-like mass arising from the periaudnexal region.

Fig. 3. Endometrial components, glandular and stromal cells, and myometrial components are immunoreactive for ER (A, B), PR (C, D), and HBME-1 (E, F, G).
Three hypotheses for the histogenesis of these masses have been proposed: 1) Mullerian duct fusion defect, 2) metaplasia, and 3) heterotopia theories. The Mullerian duct defect theory is based on a developmental abnormality during the formation of the female genital tract. Male and female embryos have two pairs of genital ducts the Wolffian (mesonephric) duct and the Mullerian (paramesonephric) duct. The Mullerian duct begins as a longitudinal folding of the coelomic epithelium on the anterolateral surface of the urogenital ridge and becomes the main female genital duct. With ovary descent at gestation week 9, the uterine tube and uterine canal are formed by the fusion of three separate portions of the Mullerian duct and extended cranially to caudally. Lack of fusion of the Mullerian duct in a localized area, or throughout its length, may explain various duplications or atresias of the uterus. 12

Uterus-like masses may result from either a Mullerian duct fusion defect or a true partial duplication of the Mullerian system, and represent uterine tissue that is anatomically separated from the uterine corpus; moreover, they are probably an example of uterus unicornis. 13

The second metaplastic theory is based on the finding that...
uterus-like masses may arise from subperitoneal mesenchymal cells that retain the ability to duplicate Mullerian duct structures. In 1997, it was proposed that some uterus-like masses originate from the peritoneal mesothelium and its subjacent connective tissue. These tissues probably retain the potential to produce different Mullerian structures, like the uterus and fallopian tubes. Moreover Lauchlan once proposed the concept of a "secondary Mullerian system" composed of peritoneal or retroperitoneal tissues with the potential to differentiate into cells similar or identical to those lining the oviducts, the endometrial cavity, or the endocervix. Support for the hormonal responsiveness of the secondary Mullerian system is provided by the uterus-like masses observed in the scrotums of men receiving estrogen therapy for prostate carcinoma. Pai et al found a close relationship between ovarian uterus-like masses, breast cancer, and elevated serum CA125 levels, and concluded that uterus-like masses are a hormone-dependent lesion and a form of endometriosis. A case was also reported in which endometriosis of a pelvic lymph node was associated with an adjacent nodular proliferation of smooth muscle cells, which the authors called "endomyometriosis".

The third heterotopia theory was proposed by Peterson et al, who reported a case of an ileal uterus-like mass in a 12-year-old girl associated with multiple lower intestinal and urogenital tract anomalies and a history of sacrococcygeal teratoma. This mass bore a striking resemblance to the uterine fundus and fallopian tube. Accordingly, they concluded that neither the congenital anomaly nor the metaplasia theory provided an entirely satisfactory explanation regarding the causative effects of either heterotopia or choristoma.

In our case, the patient had neither a structural uterine abnormality consistent with a Mullerian fusion defect nor congenital renal abnormalities on extensive workup, which included CT, ultrasound and an intravenous pyelogram. By immunohistochemistry, endometrial components, glandular and stromal cells, and myometrial components of the mass were positive for HBME-1, PR, and ER. Positivity for HBME-1 suggests that the mass originated from peritoneal mesothelial cells, i.e., "secondary Mullerian system", and positivity for ER and PR suggests that the mass was responsive to hormonal stimulation. In fact, the patient had an elevated serum CA125 level (269.09 U/mL).

In conclusion, we consider that the metaplastic theory best fits with our observations in the present case as both glandular and stromal smooth muscle cells proliferated as a true neoplasm rather than as an anomaly.

REFERENCES