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Translational research is a two-way process in which new 
findings from basic research are applied in clinical trials and de-
velopment of new drugs or treatments. Samples of DNA, RNA, 
proteins, the metabolome, etc. collected from cancer tissues and 
blood or urine are analyzed in clinical trials to search for valuable 
and relevant biomarkers that are crucial for drug development. 
Next-generation sequencing (NGS) has helped us understand 
and characterize many cancers, identify new cancer subtypes, 
develop biomarkers, and discover new treatment targets. NGS 
also has allowed us to learn about the mutational landscape of 
several cancers and to develop technologies and drugs targeting 
“driver” molecular abnormalities. Thus, the oncological commu-
nity considers NGS as a tool to improve the effectiveness of cancer 
treatment. Comprehensive, integrated molecular analyses iden-
tify molecular relationships across a diverse set of human cancers, 
suggesting future directions to explore clinical actionability in 
cancer treatments [1]. Early successes in targeting and identify-
ing individual oncogenic drivers and increased feasibility of tumor 
genome sequencing have made possible genome-driven oncology 

care [2]. We are now using NGS to capture genetic algorithms 
and register them for clinical trials. 

Immunotherapy, especially use of immune checkpoint inhib-
itors (ICI), has led to dramatic changes in the treatment of sev-
eral types of cancer in recent years [3]. Given that a small num-
ber of patients experience a long-lasting response, development 
of biomarkers to predict responsiveness to immunotherapy has 
become important. The most widely investigated biomarkers 
for immunotherapy are programmed death-ligand 1 (PD-L1), 
microsatellite instability/defective mismatch repair (MSI/dMMR), 
and tumor mutational burden (TMB). Although MSI/dMMR 
has been used for immunotherapy regardless of tumor type, PD-
L1 is being used in specific cancer types [3]. In this article, we 
concisely review the applications of NGS and immunohistochem-
istry (IHC)-based protein biomarkers, especially PD-L1, in pre-
cision oncology and clinical trials. 
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TUMOR MUTATIONAL BURDEN

Clinical significance and cutoff points 

Although not yet approved for clinical use, TMB has been 
shown to predict the response to several forms of immunotherapy 
across multiple cancer types. Specifically, cancer patients with a 
high neoantigen load or high TMB are more likely to have a 
good clinical response to ICI [4].

While not all mutations result in immunogenic neoantigens 
and determining which mutations are likely to induce immuno-
genic neoantigens remains a challenge, TMB represents a quan-
tifiable measure of the number of mutations in a tumor that can 
be used for treatment selection [5]. TMB has been traditionally 
determined using whole-exome sequencing (WES); however, the 
high cost and long work time limit its widespread use in clinical 
settings. Therefore, current precision oncology platforms generally 
use NGS of targeted gene panels [6]. A recent study analyzing 
clinical data from 7,033 ICI- and non-ICI–treated advanced-
stage cancer patients and genomic data from cancers sequenced 
with targeted NGS showed that higher somatic TMB (highest 
20% in each histology subtype) was associated with better overall 
survival in all patients [7]. However, the TMB cutoff points asso-
ciated with improved survival varied markedly between cancer 
types, suggesting that a universal definition of high TMB may 
not be possible. Similar findings in patients with gastric cancer 
were observed when the following cutoff points were applied: 
11% for the higher mutation group in 330 non-ICI–treated pa-
tients [8] and 14.31 mt/mb in 63 ICI-treated patients [6]. 

Despite efforts to standardize TMB from multiple genomic 
profiling cancer panels [4], the cutoff value for TMB remains 

inconsistent. TMB is generally defined as the number of non-
synonymous somatic mutations per megabase of genome exam-
ined, and a detailed description of TMB definitions in recently 
published papers using targeted sequencing is summarized in 
Table 1 [6-18]. 

Factors affecting tumor mutation burden

Measurement of mutation load using WES can be difficult 
due to its high cost and extensive analysis and data management 
requirements. To be applicable in a clinical setting, the follow-
ing requirements need to be met: the test must be suitable for 
clinical samples even with a limited amount of DNA; and the 
test results should be delivered within a limited time, be accu-
rate, help clinical decision-making, and must be affordable. Thus, 
targeted sequencing with comprehensive gene panels is desir-
able because of the lower sequencing costs, lower DNA input 
amounts, and shorter turnaround time [19]. However, the follow-
ing factors affect TMB calculation: (1) Contents of tumor cell 
and coverage of sequencing, as targeted cancer panels enable 
deeper sequencing compared with WES. (2) Presence of sequence 
artifacts that can be caused by formalin fixation as formalin can 
cause various crosslinks and is a well-known source of sequencing 
artifacts due to fragmentation of DNA, denaturation, and de-
amination of cytosine bases. Specifically, using formalin-fixed 
paraffin-embedded tissues for NGS causes an increase in DNA 
sequence artifacts (C:G > T:A) [20]. 

Pre-analytical factors also affect TMB measurement [19]. 
Among the most important factors are the size and number of 
genes included within the targeted cancer panel. The most widely 
used panels are the MSK-IMPACT panel, which in its latest ver-

Table 1. Tumor mutation burden measured by targeted sequencing in various cancer types

Cancer type
No. of 

patients
Methods Name of panel

No. of 
genes

Cutoff 
(mt/Mb)

Cutoff 
(percentile)

ICI 
responses 

Study

Pan-cancer 1,638 Targeted sequencing FoundationOne ~315 20 90 Yes Goodman et al. [9]
Pan-cancer 2,189 Targeted sequencing Custom Panel 592 17 92.3 Yes Vanderwalde et al. [10]
Pan-cancer 1,662 Targeted sequencing MSK-IMPACT v3 468 8.8 80 Yes Samstein et al. [7]
SCLC 134 Targeted sequencing DFCI OncoPanel 447 9.68 50 Yes Ricciuti et al. [11]
Colorectal 6,004 Targeted sequencing Comprehensive Genomic Profiling (CGP) 315 11.7 NA No Fabrizio et al. [12]
NSCLC 1,649 Targeted sequencing FoundationOne 324 10 50 Yes Hellmann et al. [13]
NSCLC 98 Targeted sequencing FoundationOne 324 10 50 Yes Ready et al. [14]
Urothelial 316 Targeted sequencing FoundationOne 315 16 75 Yes Rosenberg et al. [15]
Urothelial 931 Targeted sequencing FoundationOne NA 9.65 50 Yes Powles et al. [16]
Gastric 330 Targeted sequencing CancerScan 404 10.5 89 No Cho et al. [8]
Gastric 581 Targeted sequencing Custom Panel 592 17 93.1 No Weinberg et al. [17]
Gastric 80 Targeted sequencing Oncomine Comprehensive Assay v3 161 10 41 Yes Mishima et al. [18]
Gastric 63 Targeted sequencing Oncomine Tumor Mutation Load Assay 409 10.6 80 Yes Kim et al. [6]

ICI, immune checkpoint inhibitors; SCLC, small cell lung cancer; NA, not available; NSCLC, non-small cell lung cancer.
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sion targets 468 genes (1.22 Mb of the genome), and the Foun-
dation Medicine Panel, which targets 315 genes (1.2 Mb). Recent-
ly, two commercially available panels have been developed: the 
Oncomine Tumor Mutation Load Assay (Life Technologies; 409 
genes, 1.7 Mb) and the TruSight Oncology 500 (Illumina; 523 
genes, 1.94 Mb). As the size of panels decreases, the zone of un-
certainty associated with TMB measurement rapidly increases. 
Moreover, uncertainty rapidly increases when the size of the pan-
els is less than 1 Mb. Therefore, a minimum panel size of 300 
genes or 1 Mb has been suggested for TMB determination [5,21]. 
The final factor is the bioinformatic pipeline. For tumor-only se-
quencing in a clinical setting, germline false-positive variants can 
be filtered out using large, publicly available germline variant 
data sets. Use of germline databases is a critical step in measure-
ment of TMB. These germline databases need to provide a suffi-
ciently broad representation of all populations and patients with 
ethnic backgrounds whose underrepresentation would result in 
elevated rates of germline false-positive mutations [19]. The 
factors influencing TMB measurements and cutoff values are 
summarized in Table 2.

MICROSATELLITE INSTABILITY

Clinical significance 

Microsatellite instability–high (MSI-H) is characterized by 
accumulation of mutations, such as insertion or deletion of a 
small number of nucleotides, in microsatellites (repeated se-
quences of 1–9 nucleotides) [22]. The MSI phenotype has been 
extensively studied in colorectal cancer and is caused by deficiency 
in the DNA mismatch repair (MMR) system [23-25]. MSI has 
recently been shown to occur in 6%–20% of colorectal cancer, 
9%–20% of gastric cancer, and 17%–31% of endometrial can-
cer patients, with an incidence < 5% in other cancer types [26]. 
In addition, MSI correlates positively with survival outcome and 
predicts the response to ICI therapy [27]. For MSI, different 

microsatellites and microsatellite panels have been proposed, 
including the Bethesda/NCI panel, which is the gold standard 
microsatellite panel for MSI detection. Continuous develop-
ment of NGS has resulted in the emergence of new computa-
tional algorithms allowing detection of MSI and changes in the 
standard of MSI detection in cancer [27].

Diagnosis of MSI with NGS 

To diagnose MSI, conventional IHC or polymerase chain reac-
tion (PCR) methods are widely used. For an IHC test to deter-
mine MSI status, antibodies for the four MMR proteins (MLH1, 
PMS2, MSH2, and MSH6) are used, and additional analysis for 
MLH1 methylation or BRAF V600E mutation might be neces-
sary depending on the expression of the MMR proteins [28]. 
MLH1, PMS2, MSH2, and MSH6 form heterodimers by pair-
ing two proteins (MSH2/MSH6 and MLH1/PMS2), so that one 
defective protein shows loss of expression in one or two proteins 
[29]. The IHC results are interpreted as intact antibody when 
unequivocal nuclear staining in viable tumor cells appears in 
the presence of an internal positive control. Using PCR-ampli-
fied microsatellite loci with fluorescently labeled primers, the 
labeled PCR products can be analyzed by capillary electrophore-
sis to separate the amplicons by size. If there is allelic size varia-
tion in two or more microsatellite markers, it is considered MSI-
H; otherwise, it is categorized microsatellite-stable (MSS) [8].

Since the development of NGS, a larger number of microsat-
ellites can be analyzed for MSI detection. Ideally, MSI in cancer 
can be detected with a limit of detection at 1% in an MSS back-
ground and will further improve MSI detection in cancer.

After the first study [30] describing an MSI detection approach 
using WES and whole-genome sequencing data on colorectal 
and endometrial cancers from The Cancer Genome Atlas 
(TCGA), several NGS-based computational methods have been 
developed. These methods were based on length differences of 
selected microsatellites obtained from the read count of all al-
leles. Using Kolmogorov-Smirnov statistics for TCGA MSI 
analyses, several MSI detection programs were developed, in-
cluding MSIsensor [31], mSINGs [30], and MANTIS [32], 
which present higher overall specificity and sensitivity compared 
with prior methods [27]. To detect MSI in cancer, two critical 
parameters should be taken into consideration. First, given that 
microsatellite marker changes markedly differ between cancer 
types, selection of microsatellite markers should be carefully 
conducted to ensure high sensitivity and specificity for MSI de-
tection. Second, the analytical method should be highly resolute 
to allow discrimination of MSI and mutant allele genotype recog-

Table 2. Factors influencing measurement and cutoff values of tu-
mor mutation burden by next-generation sequencing

Factor 

Type of tumor (organ)
Indications including types of drug
Pre-analytic factors (input DNA amount, tumor cell percentages, 
  quality and quantity of DNA)
Method (type of panel sequencing including size and number of genes, 
  read depth and coverage)
Bioinformatics (limit of detection, threshold for allele frequency and 
  definition of mutation, filter settings for germline variants and deamination 
  artifacts)
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nition and should present the lowest possible limit of detection 
for employment in samples with low mutant allele frequency 
[27]. 

RNA sequencing data have demonstrated that MSIseq is the 
only method to detect MSI based on the proportion of insertions 
and deletions in mono- to hexa-nucleotide repeat microsatellites 
among all insertions and deletions found in RNA transcripts 
[33]. Since MSI has been discovered in many cancer types by 
NGS and is a major predictive biomarker to understand the re-
sponses to ICI therapy in solid tumors, it is critical to develop and 
use new sensitive tools for MSI diagnosis in clinical applications.

PROTEIN BIOMARKERS BY 
IMMUNOHISTOCHEMISTRY

IHC as an important biomarker assay

IHC studies the localization of proteins or antigens in tissue 
sections through antigen-antibody interactions using labeled 
antibodies as specific reagents. This method is widely used in 
diagnosis and biomarker discovery because of its easy accessibili-
ty, relatively lower cost compared with other methods, and high 
effectivity if the target (biomarker) is a protein. IHC plays a piv-
otal role in cancer care, providing information about the expres-
sion status of a protein target. However, over the past decade, 
IHC use as a platform for biomarkers has been challenged by 
development of more sensitive quantitative molecular assays, 
which provide reference standards but lack morphological con-
text. For IHC to be considered a ‘‘top-tier’’ biomarker assay, it 
must provide quantitative data, digitization of images, and auto-
matic image analysis [34]. Unlike manual interpretation of IHC, 
which is subjective, time consuming, and presents inherent inter-
observer and intra-observer variability, digital image analysis 
offers rapid and uniform interpretation [35]. Recently, a study on 
tumor classification and mutation prediction in non-small cell lung 
cancer using hematoxylin and eosin imaging and deep learning 

found that digital image analysis offered a significant benefit of 
providing important prognostic information based on initial 
diagnosis [36]. Automatic quantification of biomarkers such as 
tumor-infiltrating lymphocytes (TIL) and PD-L1 is one of the 
most studied topics in imageomics, digital image analysis.

Factors affecting IHC results

The use of biomarkers to guide therapy selection is gaining 
unprecedented support as a targeted therapy option to increase 
scope and complexity [37]. To be applicable for therapy in a clin-
ical setting, several conditions must be met: adequate sampling, 
fast fixation with proper fixatives and proper fixation time, de-
velopment of assays with positive and negative controls, accu-
rate interpretation, and quality control and assurance. Standard-
ized, commercially available IHC assays are preferred over in 
house assays to ensure reliability and reproducibility [38]. During 
interpretation, the test should be rejected when following factors 
are present: (1) preanalytical parameters, especially fixation, are 
not in accordance with validated procedures, (2) analytical param-
eters are not as expected due to artifacts, (3) unsatisfactory results 
in the controls, or (4) lack or very low percentage (< 10%) of tumor 
cells in the stained section. Consistent quality control and assur-
ance will help ensure reliable and consistent results. All labora-
tories should comply with the best practice guidelines to improve 
the accuracy and reliability of the test. The advantages, shortcom-
ings, and methods regarding IHC are described in Table 3.

PD-L1 as a biomarker

PD-L1 is a well-known and broadly used biomarkers for im-
munotherapy. Until now, it has been standard to perform IHC 
to evaluate PD-L1 expression. It is important for pathologists to 
pay attention to the reproducibility and accuracy in evaluating 
PD-L1 expression. Although the criteria differ depending on 
tumor type, both the tumor proportion score (TPS) and com-
bined positive score (CPS) are widely used. For TPS, the repre-

Table 3. Advantages, shortcomings, and methods as options for immunohistochemistry

Advantages Shortcomings Solutions for shortcomings 

Simple Issues with reproducibility and false positive/negative 
  results 

Strict interpretation criteria, validation, quality control, and 
  accuracy 

Inexpensive Suffer from inter-observer variation or subjective 
  interpretation

Digital microscopy and precision image analysis technologies

Processed slides can be stored 
  for years and reassessed

Fixation can affect results Standardization of analytical and pre-analytical variables

Cell morphology can be viewed 
  in parallel

Staining quality affects results Assay optimization with best-in-class primary antibody selection

Usually only 1–2 proteins can be analyzed per a 
  section

Multiplex immunohistochemistry



https://jpatholtm.org/ https://doi.org/10.4132/jptm.2020.09.23

30     •  Kim B et al.

sentative cancer type is lung cancer (https://www.agilent.com/
cs/library/usermanuals/public/29158_pd-l1-ihc-22C3-pharm-
dx-nsclc-interpretation-manual.pdf). TPS is the percentage of 
viable tumor cells showing partial or complete membrane stain-
ing relative to all viable tumor cells (Fig. 1). For CPS, the repre-
sentative tumors are urothelial carcinoma (https://www.agilent.
com/cs/library/usermanuals /public/29276_22C3_pharmdx_
uc_interpretation_manual_us.pdf) and gastric cancer (https://
www.agilent.com/cs/library/usermanuals/public/29219_pd-l1-

Fig. 2. Programmed death-ligand 1 staining of tumor cells and tumor-associated mononuclear inflammatory cells in gastric cancer, exhibit-
ing two distinct staining patterns: lattice (A) and interface (B).

ihc-22C3-pharmdx-gastric-interpretation-manual_us.pdf). CPS 
is identified as the number of PD-L1–stained cells including 
tumor cells, lymphocytes, and macrophages divided by the to-
tal number of viable tumor cells, multiplied by 100. In gastric 
cancer, PD-L1–stained tumor cells and tumor-associated mono-
nuclear inflammatory cells in gastric cancer exhibit distinct stain-
ing patterns (Fig. 2).

PD-L1 is a cell surface protein encoded by the CD274 gene. 
Tumor cells up-regulate the expression of PD-L1 after exposure 

Fig. 1. High programmed death-ligand 1 (≥ 50%) staining in partial or complete cell membrane (≥ 1+) in ≥ 50% of viable tumor cells in non-
small cell lung cancers. (A) Lower magnification. (B) Higher magnification.

A

A

B

B
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to interferon-γ and other cytokines [39]. Moreover, some im-
mune cells in the tumor microenvironment (TME) such as antigen 
presenting cells, dendritic cells, macrophages, and T cells also 
show increased PD-L1 expression [40]. Evaluation using IHC 
has demonstrated that pre-treatment positive PD-L1 expression 
on tumor or immune cells may be used as a biomarker to predict 
favorable prognosis of ICI therapy in various cancer types [41]. 
Recently, there was an attempt to classify tumors into four types 
of TME based on PD-L1 expression status and TIL [42,43]: 
type I (PD-L1+/TIL+, adaptive immune resistance; 38%), type 
II (PD-L1–/TIL–, immune ignorance; 41%), type III (PD-L1+/
TIL–, intrinsic induction of PD-L1; 1%), and type IV (PD-L1–/
TIL+, tolerance; 20%) [44]. Patients with TME subtype I are the 
most likely to respond to programmed death-1/PD-L1 blockade, 
and the proportion of this TME type in various kinds of cancer 
can differ depending on genetic alterations, oncogene drivers of 
the cancer, and tissue type [42]. Since TME is heterogeneous 
between tumor types and between patients [45], in silico insights 
on TME are critical for successful immunotherapy [22]. Recently, 
it was shown that PD-L1 mRNA expression examined by RNA-
seq [46] or Nanostring [47] correlates well with PD-L1 protein 
expression by IHC. Development of additional platforms will 
allow prediction of cancer progression and increase the length 
and quality of life of cancer patients.

In conclusion, despite the many obstacles, gene-targeted clini-
cal trials may be very successful, and combined biomarkers will 
allow us to select optimal individual treatment strategies. 
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