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Background: Invasion of epithelial cells into the connective tissue brings about massive morpho-
logical and architectural changes in the underlying stroma. Myofibroblasts reorganize the stroma 
to facilitate the movement of tumor cells leading to metastasis. The aim of this study was to deter-
mine the number and pattern of distribution of myofibroblasts and the qualitative and quantitative 
change that they cause in the collagen present in the stroma in various grades of oral squamous 
cell carcinoma (OSCC). Methods: The study was divided into two groups with group I (test group, 
65 cases) consisting of 29 cases of well-differentiated squamous cell carcinoma, 25 moderately 
differentiated SCC, and 11 poorly differentiated SCC, and group II (control group) consisting of 11 
cases of normal mucosa. Sections from each sample were stained with anti–α-smooth muscle 
actin (α-SMA) antibodies, hematoxylin and eosin, and Picrosirius red. Several additional sections 
from each grade of OSCC were stained with Masson’s trichrome to observe the changes in collagen. 
For the statistical analysis, Fisher’s exact test, Tukey’s post hoc honest significant difference test, 
ANOVA, and the chi-square test were used, and p < .05 was considered statistically significant. 
Results: As the tumor stage progressed, an increase in the intensity α-SMA expression was seen, 
and the network pattern dominated in more dedifferentiated carcinomas. The collagen fibers be-
came thin, loosely packed, and haphazardly aligned with progressing cancer. Additionally, the mean 
area fraction decreased, and the fibers attained a greenish yellow hue and a weak birefringence 
when observed using polarizing light microscopy. Conclusions: Myofibroblasts bring about numer-
ous changes in collagen. As cancer progresses, there isincrease in pathological collagen,which 
enhances the movement of cells within the stroma.
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▒ ORIGINAL ARTICLE ▒

In India, 130,000 people succumb to oral cancer annually, which 
translates to approximately 14 deaths per hour.1 It accounts for 
over 30% of all cancers in India.2 In the United States,, oral cancer 
represents approximately 13% of all cancers with 30,000 new 
cases every year.1

The tumor stroma plays a critical role during carcinogenesis 
as it is required for the tumor to grow beyond a minimal size of 
1–2 mm.3 Inappropriate synthesis or degradation of any extra-
cellular matrix (ECM) component can alter cell physiology and 
aid in the progression of disease.4 The mechanical quality of the 
ECM is mainly dependent on its collagen content because collagen 
is the main barrier to be cleared away during invasion.5

The ECM mainly consists of type I collagen (approximately 
90%) with 8%–10% type III collagen. Electron microscopic 
studies have shown that type I collagen fibers are coarse and are 
composed of closely packed, thick fibrils, whereas type III colla-
gen fibers are fine and are composed of loosely dispersed, thin 

fibrils.6 Collagen fibers exhibit changes in type, diameter, color, 
orientation, density, and amount with tumor progression.7

Myofibroblasts are cancer-induced host cells of the microen-
vironment and are believed to be derived from normal fibro-
blasts during times of tissue stress or altered homeostasis. They 
are defined immunohistochemically by the presence of α-smooth 
muscle actin (α-SMA).8 Additionally, they produce inflamma-
tory mediators and growth factors that aid in ECM reorganization 
and stimulate epithelial cell proliferation.9

Picrosirius red (PSR) stain is a highly specific and selective 
stain for collagen fibers due to its ability to differentiate between 
pathological and normal collagen.10 Using this stain, collagen 
fibers can be evaluated both qualitatively and quantitatively, and 
this information can provide useful clues to the various aspects 
of tumor progression.7

The aim of this study was to determine the number and pattern 
of distribution of myofibroblasts and the qualitative and quan-
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titative changes that they cause in the collagen present in the 
stroma in various grades of oral squamous cell carcinoma (OSCC).

MATERIALS AND METHODS

After obtaining permission from the Institutional Scientific and 
Ethical Committee (approval no. 811516/OP/EC), the present 
study was carried out on tissues archived in the department. 
Medical records, including informed consent and pathology re-
ports, were reviewed and the patient’s age, sex, tumor location, 
tumor size, differentiation, invasion depth of tumor, lymph 
node metastasis, and clinical stage were recorded. Patients who 
had received preoperative chemotherapy and/or radiotherapy 
were excluded from the study. 

The study comprised 76 cases, which were divided into two 
groups. Group I consisted of 65 cases of histologically proven 
OSCC with 29 cases of well-differentiated squamous cell carcinoma 
(WDSCC), 25 of moderately differentiated SCC (MDSCC), and 
11 of poorly differentiated SCC (PDSCC). Group II was the 
control and consisted of 11 cases of normal mucosa obtained 
following an operculectomy or frenectomy. Smooth muscle cells 
surrounding the blood vessels were used as a positive internal 
control for the α-SMA stained slides. 

Formalin-fixed, paraffin- embedded tissues were sectioned at 
4 µm, and three sections from each sample were prepared. The 
first section was mounted on a poly-L-lysine coated slide and 
stained with antibodies against α-SMA. The second section was 
stained with hematoxylin and eosin, observed under a light micro-
scope, and graded according to the Broder classification. The third 
section was stained with PSR and observed under a polarizing 
light microscope. Several additional sections from each grade of 
OSCC were obtained and stained with Masson’s Trichrome to 
observe the morphological changes in collagen.

For immunohistochemistry (IHC), the sections were first depa-
raffinized, hydrated and washed in distilled water for 5 minutes. 
Antigen retrieval was then performed by immersing the slides in 
pre-warmed 1 M citrate buffer (pH 6.0) and heating in a micro-
wave oven at 95–98ºC for 20 minutes. Blocking of the endoge-
nous peroxidase was performed by immersing the slides in a 
mixture of 50 mL of methanol with 1.5 mL of hydrogen peroxide 
for 30 minutes in a humidified chamber followed by washing 
in distilled water for 5 minutes. The slides were then cooled to 
room temperature and washed in 1 M Tris buffer (pH 7.2). 
Primary mouse anti-human α-SMA monoclonal antibody clone1 
A4 (Thermo Scientific, Waltham, MA, USA) at a dilution of 
1:50–100 was added to the sections, and the slides were incu-

bated for 30 minutes at room temperature. The slides were then 
washed in 1 M Tris buffer (pH 7.2), and “horse radish peroxidase-
conjugated goat anti-mouse secondary antibody” was added to 
the sections and incubated for 30 minutes. The slides were 
washed again in 1 M Tris buffer (pH 7.2) followed by the addition 
of diaminobenzidine (DAB) chromogen in DAB buffer (Thermo 
Scientific). The slides were incubated for 3 minutes then coun-
terstained with hematoxylin.11 The anti–α-SMA antibody-la-
belled cells were identified by the strong, dark brown cytoplasmic 
staining of the myofibroblasts. The samples were then assessed 
for the intensity and pattern of myofibroblastic proliferation. 

For PSR staining, paraffin-embedded tissue sections were dehy-
drated and de-waxed then stained with Weigert’s hematoxylin 
for 8 minutes. The slides were then washed for 10 minutes under 
running tap water and stained with PSR stain for 1 hour followed 
by washing in 2 changes of acidified water. The sections were 
dehydrated in three changes of 100% alcohol and cleared by dip-
ping in xylene followed by mounting using DPX mounting media 
and a cover slip. Using light microscopy, the nuclei appear black 
and collagen appears red. Using polarizing microscopy, collagen 
fibers produce orange red (OR), yellowish orange (YO), or green/
greenish yellow (G/GY) birefringence.11

Intensity and pattern of α-SMA expression

Intensity score for α-SMA

The percentage of cells positive for α-SMA in the tumor stroma 
were classified into the following categories12: absent/0, no positive 
cells; mild/1+, 1%–33% positive cells; moderate/2 +, 34%–
66% positive cells; and intense/3 +, 67%–100% positive cells.

Pattern of α-SMA expression

The distribution and arrangement of positively stained myo-
fibroblast cells were classified into three groups: focal, spindle, 
and network.13 Focal indicates no specific arrangement of the 
myofibroblasts. In the spindle groups, myofibroblasts were arranged 
in one to three rows in a regular order in the periphery of the 
neoplastic islands or in the connective tissues with distinctive 
cell margins around the myofibroblasts and malignant tissue. A 
“network” classification includes myofibroblasts with vesicular 
nuclei and abundant cytoplasm arranged in multiple rows with an 
interwoven network of cytoplasmic extensions forming a network 
in the stroma of the connective tissue.

Collagen evaluation 

The parameters used for the evaluation of the collagen were 



http://jpatholtm.org/ https://doi.org/10.4132/jptm.2018.07.17

316     •  Khalid A, et al.

thickness, arrangement and orientation, packing, mean area frac-
tion, and hue and birefringence exhibited by the fibers.

For measuring fiber thickness, images of PSR-stained slides 
were obtained at 400 × magnification and processed using image 
analysis software (Image J, ver. 1.46 r, NIH, Bethesda, MD, 
USA). In samples from normal tissues, collagen fibers from the 
lamina propria were studied, and in OSCC samples, collagen fibers 
around tumor islands were used. For each section, two separate 
high-power fields with at least 50 fibers of each size (25 each of 
thick and thin fibers) were examined.14 Collagen fibers with a 
thickness of 2–10 μm were considered thick, type I fibers and fi-
bers 0.5–1.5 μm in diameter were considered thin, type III fibres.15

The arrangement and orientation of collagen fibers were cate-
gorized as either parallel or haphazard based on their appearance 
in relation to the tumor islands. The evaluation was performed 
in five selected fields at 100 × magnification.7

The packing of the collagen fibers was categorized as either 
dense or loose based on their appearance in 5 selected fields at 100 × 
magnification in the immediate vicinity of the tumor islands.7

For measuring the mean area fraction, images of the sections 
at 400 × magnification were evaluated using the image analysis 
software. The percentage of the area occupied by collagen fibers 
in a given field was calculated for each grade of OSCC and also for 
normal mucosa.7

For determining hue and birefringence, five random high-
power fields for each slide of the connective tissue stroma at 400 × 
magnification were evaluated. In samples from normal tissues, 
collagen fibers from the lamina propria were studied, and in OSCC 
samples, collagen fibers around tumor islands were used. The 
predominant hue exhibited by the collagen fibers was classified 
as either OR, YO, or G/GY, and the birefringence was classified 
as either strong or weak.6,7,16-18

Categorical variables, such as α-SMA expression, pattern, colla-
gen fiber orientation and packing, andhue and birefringence,are 
expressed as a percentage, and continuous variables, such as col-
lagen fiber thickness and mean area fraction, areexpressed as the 
mean and standard deviation. For the categorical variable, the 

chi-square testwas used to test the significance of the association. 
When more than 20% of the individual cells had an expected 
value of less than five Fisher exact test was used. For the contin-
uous variables, the mean and SD of the subgroups were tested for 
significance using Analysis of Variance (ANOVA). Since ANOVA 
does not comment on significant differences in subgroups, Tukey’s 
post hoc honest significance difference testing was used for fur-
ther analysis if the ANOVA results were significant. For the col-
lagen fiber thickness and mean area fraction, all four statistical 
tests were used. For all tests, p < .05 was considered statistically 
significant.

RESULTS

Expression of α-SMA was not observed in the stroma of normal 
oral mucosa except for the blood vessels. The α-SMA expression 
in OSCC samples is shown in Table 1 and Figs. 1, 2, and 3. 
Among the different degrees of differentiation, a statistically 
significant increase in the intensity of α-SMA expression was 
found in MDSCC compared to WDSCC and in PDSCC compared 
to MDSCC (p < .001). A variation in the pattern of α-SMA expres-

Table 1. Level of α-SMA expression in malignant lesions

Type of lesion No. of cases
α-SMA intensity score (%)

0 1+ (mild) 2+ (moderate) 3+ (intense)

WDSCC 29 4 (13.8) 17 (58.6) 8 (27.6) 0
MDSCC 25 0 7 (28) 13 (52) 5 (20)
PDSCC 11 0 0 3 (27.3) 8 (72.7)

Values are presented as number (%).
Fisher exact test p < .001.
α-SMA, α-smooth muscle actin; WDSCC, well differentiated squamous cell carcinoma; MDSCC, moderately differentiated squamous cell carcinoma; PDSCC, 
poorly differentiated squamous cell carcinoma.

Fig. 1. Light microscopy image of well-differentiated squamous cell 
carcinoma showing mild α-smooth muscle actin positivity in the 
stroma. Myofibroblasts can be seen distributed in a focal pattern.
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sion was noted among the malignant lesions, which included 
focal, spindle, and network patterns of stromal myofibroblast 
positivity as shown in Table 2. Statistically significant differ-
ences were found in the expression pattern among the malignant 
lesions (p < .001). The network pattern was significantly domi-
nant in carcinomas with less differentiation. 

The mean, SD, and range of fiber thickness (measured in µm) 
of different grades of OSCC are presented in Table 3. In WDSCC 
and normal mucosa, the collagen fibers appeared predominantly 
as bundles of thick fibers. The thickness gradually decreased as 
the carcinomas progressed from well to poorly differentiated. 
Statistically significant differences were seen between WDSCC 
and MDSCC (p < .001), WDSCC and PDSCC (p < .001), MDSCC 
and normal cells (p = .041), and PDSCC and normal cells (p = 

.002). The collagen fibers predominantly exhibited a parallel 
orientation in WDSCC, which gradually changed to a haphazard 
pattern with the progression towards poorly differentiated car-
cinoma as shown in Figs. 4, 5, and 6. These changes were statis-
tically significant (p = .002) as shown in Table 4. The collagen 
fibers were densely packed around the tumor islands in most cases 
of WDSCC but loosely packed in most of the cases of MDSCC 
and in all cases of PDSCC. These differences were statistically sig-
nificant (p = .001) as shown in Table 5. The mean area fraction oc-
cupied by the collagen fibers gradually decreased as the OSCC 
progressed from well to poorly differentiated. Statistically significant 

Table 2. Pattern of α-SMA expression in malignant lesions

Type of lesion No. of cases Negative staining Focal pattern Spindle pattern Network pattern

WDSCC 29 4 (13.8) 19 (65.5) 6 (20.7) 0
MDSCC 25 0 3 (12) 8 (32) 14 (56)
PDSCC 11 0 0 2 (18.2) 9 (81.8)

Values are presented as number (%).
Fisher exact test p < .001.
α-SMA, α-smooth muscle actin; WDSCC, well differentiated squamous cell carcinoma; MDSCC, moderately differentiated squamous cell carcinoma; PDSCC, 
poorly differentiated squamous cell carcinoma.

Fig. 2. Light microscopy image of moderately differentiated squa-
mous cell carcinoma showing intense α-smooth muscle actin posi-
tivity in the stroma. Myofibroblasts can be seen distributed in a spin-
dle pattern.

Fig. 3. Light microscopy image of poorly differentiated squamous cell 
carcinoma showing intense α-smooth muscle actin positivity in the 
stroma. Myofibroblasts can be seen distributed in a network pattern.

Table 3. Collagen fiber thickness (µm) in varying grades of oral 
squamous cell carcinoma

Group No. Mean ± SD Minimum–Maximum

WDSCC 29 2.9 ± 1.1 1.0–5.3
MDSCC 25 1.9 ± 0.5 1.0–3.4
PDSCC 11 1.3 ± 0.4 1.0–2.2
Normal mucosa 11 2.7 ± 1.0 1.1–4.2

ANOVA test results: F(3,72) = 13.423, p < .001. Significant at p < .01.
Post-hoc Tukey’s honest significant difference testing reveals significant dif-
ferences between WDSCC and MDSCC (p < .001); WDSCC and PDSCC 
(p < .001); MDSCC and normal (p = .041); and; PDSCC and normal (p = 

.002).
SD, standard deviation; WDSCC, well differentiated squamous cell carcino-
ma; MDSCC, moderately differentiated squamous cell carcinoma; PDSCC, 
poorly differentiated squamous cell carcinoma.
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differences were seen between the groups as shown in Table 6.
In a majority of the samples of normal mucosa and WDSCC, 

the collagen fibers predominantly exhibited an OR hue with strong 
birefringence as seen in Fig. 7. In most of the cases of MDSCC, 
the fibers predominantly exhibited a YO hue with strong bire-
fringence as seen in Fig. 8, and in a majority of the PDSCC cases, 
the fibers predominantly exhibited a GY hue with weak bire-
fringence as seen in Fig. 9. These groupings were highly signifi-
cant (p < .001) as shown in Tables 7 and 8.

DISCUSSION

In our study, OSCC was more common in males aged 40–59 

years, and the most common site for oral cavity lesions was the 
floor of the mouth. In previous studies, oral cancer was also most 
common in middle-aged and older individuals.19,20 Increased 
exposure to risk factors, such as smoking and tobacco or betel 
chewing, in males makes them more prone to develop oral can-
cer.21,22 Due to the habitual placement of tobacco or a betel quid 

Fig. 4. Light microscopy image of a Masson’s trichrome–stained 
section of well-differentiated oral squamous cell carcinoma showing 
densely packed collagen fibersexhibiting a parallel arrangement.

Fig. 5. Light microscopy image of a Masson’s trichrome–stained 
section of moderately differentiated oral squamous cell carcinoma 
showing haphazardly arranged collagen fibers.

Fig. 6. Light microscopy image of a Masson’s trichrome–stained 
section of poorly differentiated oral squamous cell carcinoma 
showing haphazardly arranged, loosely packed collagen fibers.

Table 4. Orientation of collagen fibers aroundtumor islands in vary-
ing grades of oral squamous cell carcinoma

Group
Fibre orientation 

Total
Haphazard Parallel

WDSCC 13 (44.8) 16 (55.2) 29 (100)
MDSCC 19 (76) 6 (24) 25 (100)
PDSCC 11 (100) 0 (0) 11 (100)
Total 43 (66.2) 22 (33.82) 65 (100)

Values are presented as number (%).
Chi-square = 12.6, df = 2, p = .002. Significant at p < .05.
WDSCC, well differentiated squamous cell carcinoma; MDSCC, moderately 
differentiated squamous cell carcinoma; PDSCC, poorly differentiated 
squamous cell carcinoma.

Table 5. Packing of collagen fibersaround tumor islands in varying 
grades of oral squamous cell carcinoma 

Group
Fibre arrangement

Total
Dense Loose

WDSCC 19 (65.5) 10 (34.5) 29 (100)
MDSCC 10 (40) 15 (58.8) 25 (100)
PDSCC 0 11 (100) 11 (100)
Total 29 (44.6) 36 (55.4) 65 (100)

Values are presented as number (%).
Chi-square = 14.2, df = 2, p = .001. Significant at p < .05.
WDSCC, well differentiated squamous cell carcinoma; MDSCC, moderately 
differentiated squamous cell carcinoma; PDSCC, poorly differentiated 
squamous cell carcinoma.
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on the floor of the mouth, this site appears to be at increased 
risk of developing carcinoma.

In our study, we found a significant increase in the number of 

Table 6. Mean area fraction of collagen fibers in varying grades of 
oral squamous cell carcinoma

Group No. Mean ± SD (%) Minimum–Maximum

WDSCC 29 25.1 ± 5.5 17.7–37.0

MDSCC 25 18.9 ± 3.7 11.5–24.1

PDSCC 11 10.6 ± 3.0 7.0–16.3

Normal mucosa 11 31.5 ± 3.5 27.4–36.2

ANOVA test results. F(3,72) = 51.2, p < .001. Significant at p < .05.
Post-hoc Tukey’s honest significant difference (HSD) testing reveals signifi-
cant differences between all of the groups with each other (p < .001).
SD, standard deviation; WDSCC, well differentiated squamous cell carcino-
ma; MDSCC, moderately differentiated squamous cell carcinoma; PDSCC, 
poorly differentiated squamous cell carcinoma.

Fig. 7. Polarizing light microscopy image of a Picrosirius red-
stained section of well-differentiated oral squamous cell carcinoma 
showing densely packed collagen fibers (arrow) exhibiting a parallel 
arrangement and orange-red birefringence.

Fig. 8. Polarizing light microscopy image of a Picrosirius red-
stained section of moderately differentiated oral squamous cell 
carcinoma showing haphazardly arranged, loosely packed colla-
gen fibers (arrow) exhibiting yellowish-orange birefringence.

Fig. 9. Polarizing light microscopy image of a Picrosirius red-
stained section of poorly differentiated oral squamous cell carcino-
ma showing haphazardly arranged, loosely packed collagen fibers 
(arrow) exhibiting greenish-yellow birefringence.

Table 8. Nature of birefringence observed in varying grades of oral 
squamous cell carcinoma

Group
Birefringence

Total
Strong Weak

Normal mucosa 10 (90.9) 1 (9.1) 11 (100)
WDSCC 26 (89.6) 3 (10.3) 29 (100)
MDSCC 19 (76) 6 (24.0) 25 (100)
PDSCC 3 (27.3) 8 (72.7) 11 (100)
Total 60 (81.1) 14 (18.9) 76 (100)

Values are presented as number (%).
Chi-square = 19.2, df = 3, p < .001. Significant at p < .01.
WDSCC, well differentiated squamous cell carcinoma; MDSCC, moderately 
differentiated squamous cell carcinoma; PDSCC, poorly differentiated 
squamous cell carcinoma.

Table 7. Colors observed via polarizing light microscopy in varying 
grades of oral squamous cell carcinoma 

Group
Hue 

Total 
OR YO GY

Normal mucosa 6 (54.6) 4 (36.4) 1 (9.1) 11 (100)
WDSCC 18 (62) 8 (27.5) 3 (10.3) 29 (100)
MDSCC 9 (35.3) 13 (52) 3 (12) 25 (100)
PDSCC 0 (0) 3 (27.3) 8 (72.7) 11 (100)
Total 33 (43.4) 28 (36.8) 15 (19.7) 76 (100)

Values are presented as number (%).
Fisher’s exact test, p < .001. Significant at p <. 01.
OR, orange red; YO, yellowish orange; GY, greenish yellow; WDSCC, well 
differentiated squamous cell carcinoma; MDSCC, moderately differentiated 
squamous cell carcinoma; PDSCC, poorly differentiated squamous cell 
carcinoma.
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myofibroblasts in OSCC compared to normal tissue, and more 
myofibroblasts were seen in more dedifferentiated carcinomas. 
Previous studies have demonstrated that factors derived from 
aggressive tumor cells are able to diffuse through the basement 
membrane and stimulate myofibroblast transformation.23,24 OSCC-
derived tumor growth factor β1 promotes fibroblast–myofibro-
blast trans-differentiation. and factors released from these myo-
fibroblasts induce tumor cellular proliferation.25-27 Additionally, 
hyaluronan is implicated in myofibroblast formation and main-
tenance. Reduced turnover of hyaluronan has been linked to differ-
entiation of myofibroblasts, and there is a reciprocal relationship 
between the amount of hyaluronan in the matrix and the ability 
of myofibroblasts to deposit fibrillar matrix components.28

We found large variations in the pattern of α-SMA expres-
sion among the malignant lesions ranging from focal to spindle 
to network patterns of stromal myofibroblast positivity. In general, 
the network pattern of α-SMA was seen more often in more dedif-
ferentiated carcinomas. It is likely that neoplastic lesions show 
more severe invasive behavior and a poorer prognosis because of 
the higher number of network-arranged myofibroblasts.13,25 In 
a similar study, IHC was used to detect α-SMA–positive myofi-
broblasts in gastric cancer stromata and in non-neoplastic mucosa. 
Because more myofibroblasts were seen in gastric cancer than in 
the non-neoplastic mucosa, it was concluded that an increased 
number of collagen-producing myofibroblasts may be a crucial 
cause of increased collagen deposition in gastric cancer.29

In our study, the collagen fibers predominantly appeared as 
bundles of thick fibers in WDSCC. Previous studies have shown 
thata collagen-rich microenvironment can promote invasion 
and metastasis.30 Similar to previous findings, the thickness of 
the collagen fibers decreased with progressing OSCC.6,31 As cancer 
progresses, changes in the thickness of collagen fibers occurs 
with a decrease in the existing type I collagen and a simultaneous 
increase in type III collagen due to enzymatic degradation 
brought about by myofibroblasts.7,32 Matrix metalloproteinases 
(MMPs) and lysosomal enzymes, particularly acidic cathepsin, 
are important proteolytic enzymes responsible for connective tissue 
dissolution.6,33 Hyaluronan synthase 2 is one of the key regulators 
responsible for myofibroblast-mediated OSCC progression and 
acts by modulating the balance of MMP1 and tissue inhibitor 
of metalloproteinases (TIMP1).34

Several changes occurred in the arrangement of the collagen 
fibers with the progression of OSCC. First, the orientation of 
collagen fibers changed from parallel to haphazard as seen in other 
studies.7,18,35 Several studies have reported that collagen fibers are 
realigned with respect to the tumor border to promote cell inva-

sion by enabling cells to migrate along the collagen fibres.36-40 
The packing of the fibers also changed from dense to loose as the 
carcinoma progressed, which was similar to a previous study.7 The 
dense arrangement of collagen fibers is due to increased synthesis 
and increased cross-linking of fibrillar collagen by myofibro-
blasts.29 With the progression of cancer, there is increased deg-
radation of the stroma making it loosely packed.6,33 Finally, the 
mean area fraction occupied by collagen fibers decreased gradually 
with progression from WDSCC to PDSCC as in previous stud-
ies.41,42 This could be attributed to MMP-1, which causes deg-
radation of type I collagen leading to a decrease in the mean area 
fraction.42

Differences in interference colors and birefringence intensity 
can be due to distinct patterns of physical aggregation, the degree 
of polymerization, and the three-dimensional organization of 
collagen fibres.15,43 The strong birefringence and OR hue of the 
control and WDSCC samples appear to be related to the higher 
amount of thick type I collagen fibers. The weak birefringence 
and greenish-yellow hue of the PDSCC samples could be either 
be due to an increased number of thin fibers (i.e., type III collagen 
fibers that were identified as reticulin fibers) or the result of ab-
normal or pathological collagen formed by the tumor cells or 
stroma. Regardless of the cause, our results were in accordance 
with those of other studies.3,6,7,16,17,31

It was recently reported that pharmacological inhibition of 
NOX4 slows tumor growth in vivo by targeting myofibroblasts.44 
Lysyl oxidase-like 2 (LOXL2) antibodies disrupt the orientation 
and width of collagen fibers, ultimately resulting in decreased 
tumor growth.45 Our data revealed that collagen fibers were 
quantitatively and qualitatively reorganized in the stroma of 
OSCC. We believe that the increase in activated fibroblasts (i.e., 
myofibroblasts) was a crucial contributor to collagen reorgani-
zation. Initially, there is an attempt to restrict the movement of 
tumor cells, but as the cancer progresses, there is an increase in 
pathological collagen, which enhances movement of the cells 
within the stroma. Therefore, targeting myofibroblasts and collagen 
cross-linking enzymes may be a promising treatment for oral cancer.
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