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Extracellular Vesicles and the Promise of Continuous Liquid Biopsies
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The rapid and accurate diagnosis of patients with minimally invasive procedures was once only 
found in science fiction. However, the discovery of extracellular vesicles (EVs) and their near ubiq-
uity in body fluids, coupled with the advent of inexpensive next generation sequencing tech-
niques and EV purification protocols, promises to make science fiction a reality. Purifying and se-
quencing the RNA content of EV from routine blood draws and urine samples are likely to enable 
pathologists and physicians to diagnose and track the progress of diseases in many inaccessible 
tissues in the near future. Here we present the evolutionary background of EV, summarize the bi-
ology of EV formation and cargo selection, and discuss the current barriers to making continuous 
liquid biopsies through the use of EV a science reality.
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▒ REVIEW ▒

The production and release of membrane-bound vesicles by 
cells (which we will refer to generally as extracellular vesicles 
[EVs] in this review) is a process found in members of all three 
domains, including Archaea,1,2 Bacteria,3-5 and Eukaryotes (Fig. 
1).3-15 EVs contain a diverse complement of proteins, nucleotides, 
and lipids,16,17 perform a large variety of functions, including antigen 
processing,18 host-parasite communication19 and competition 
with other species,1 and are hypothesized to be formed by multiple 
mechanisms.8 The observation of EVs in fluids such as saliva,20 
urine,21 and blood22 as well as the visualization and selection of 
EVs released from many human cells and cell lines including 
placenta (syncytiotrophoblasts,23 HTR-8, and JEG-324), kidneys,25 
and blood cells (including lymphocytes,14 platelets,26 and reticu-
locytes27) argues for the continued function of EV in humans 
when coupled with the history of convergent evolution and conser-
vation of function of EVs. In this review, we will first present 
some of the current hypotheses for the functions of human-derived 
EV, and second suggest how the phenomenon of EV production 
can be utilized for the remote sensing of inaccessible tissues and 
discuss the roadblocks to immediate utilization.

PRODUCTION AND FUNCTION OF 
EXTRACELLULAR VESICLES

EVs have been found in almost every human body fluid,28 
including urine,21,29 blood,22,30 saliva,20,31 cerebrospinal fluid 
(CSF),32 synovial fluid,33 semen,34 breast milk,35 amniotic fluid,36 
aqueous humor (from cadavers),37 lymph,38 and bronchoalveolar 
lavage fluid.39 Because of the ubiquity of EVs, the mechanism of 
production and the likely functions of EVs have been the subject 
of intense study.

Production of extracellular vesicles

Eukaryotes generate multiple kinds of EVs. The major classes 
include exosomes, which are generated from multi-vesicular 
endosomes (MVEs), shedding microvesicles, which originate 
from the plasma membrane, apoptotic blebs, which result from 
programmed cell death, and gesicles, which are produced by 
vesicular stomatitis virus and potentially incorporate specific 
cargo proteins.40 Exosomes are generated by the inward budding 
of MVEs and early endosomes which is mediated by the actions 
of endosomal sorting complexes required for transport (ESCRTs), 
ceramides, and tetraspanins.41 The inward budding results in the 
potentially selective incorporation of cytoplasmic components 
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including RNA, DNA, and proteins into the lumen of the exo-
some, as well as membrane lipids and transmembrane proteins. 
If the resultant MVEs are targeted to the plasma membrane instead 
of the lysosome, the fusion of MVEs with the plasma membrane 
leads to the release of exosomes. The fusion event is mediated 
by the action of multiple Rab proteins, including RAB27A 
(RAB27A, member RAS oncogene family), RAB35 (RAB35, 
member RAS oncogene family), and RAB11A (RAB11A, member 
RAS oncogene family)42 in addition to the action of the cyto-
skeleton and fusion machinery (soluble NSF attachment protein 
receptors [SNAREs], etc.).41 The proteins involved in the processing 
of MVEs into EVs, including the ESCRTs, Rabs, and SNAREs, 
are present across the eukaryotes, which argues for EV produc-
tion in at least the last common eukaryotic ancestor. The presence 
of orthologs of ESCRTs in archaea suggests that the last universal 
common ancestor may also have produced EVs.43 However, 
since these proteins are also essential to ubiquitination pathways, 
it is possible that the conservation of EV production is a by-product 
of the conservation of the targeting of proteins to the lysosome 
for degradation.

The budding of microvesicles from the plasma membrane requires 
the actin-myosin machinery and small GTPases such as ADP ribo-
sylation factor 6 (ARF6), but does not appear to require ESCRTs, 
although there is evidence that ESCRT-I is associated with some 
microvesicles. Further advances in microscopy, including auto-
fluorescence contrast microscopy, are likely to enable the visual-
ization of EV production.44

Cargo selection in extracellular vesicles

The content of EVs often differs significantly from the cellular 
compartments from which the EVs are generated, both in 
terms of membrane composition and surface markers, as well as 
the contents of the lumen (RNA, DNA, and proteins) (Fig. 2).16,17 

While some of the differences in membrane composition may 
be due purely to free energy considerations within the membrane 

such as curvature and charge, the enrichment of specific RNA 
motifs (ACCAGCCU, CAGUGAGC, and UAAUCCCA)45 and 
protein surface markers (epithelial cell adhesion molecule [EPCAM], 
Erb-b2 receptor tyrosine kinase 2 [ERBB2], protein tyrosine 
phosphatase, receptor type C [PTPRC], or CD63 molecule 
[CD63])46 argues for the selective packaging of EV contents. 
Proteins that may fulfill the role of RNA sorting include members 
of the ESCRT-II complex as well as the RNA-induced silencing 
complex (RISC) (including trinucleotide repeat containing 6A 
[TNRC6A] and argonaute 2 [AGO2, RISC catalytic compo-
nent]41,47), but the complete picture of the RNA sorting is still 
unclear. For example, it is not yet clear whether the sorting of RNA 
into exosomes is for the primary purpose of export in EV or if it is 
a side effect of targeting RNA to the lysosome which is sometimes 
exploited to provide export in EV. Pulse-chase experiments with 
labelled RNA may help elucidate the kinetics of this transport, 
and thereby determine whether specific RNAs are targeted for 
secretion, or if the process is RNA agnostic.

Function of extracellular vesicles

There are multiple hypotheses for the ancestral function of EVs. 
The first set of hypotheses deal with the function of the content 
of EVs; the second with the need to enclose the content of EVs 
within vesicles, and the degree of importance of the vesicle mem-
brane surface markers. EVs from gram-negative bacteria have 
been shown to contain Quorum sensing molecules,48 toxins (Shiga 
toxin,49 ClyA50), and immune system modulators.5,8 Enteropar-
asites such as nematodes have also been shown to modulate innate 
immunity by transferring small RNAs (miR-100 and Y RNA) 
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Fig. 1. Extracellular vesicles are found in all domains of life, includ-
ing Archaea,1,2 Bacteria,3–5 and Eukaryotes.3-15

Fig. 2. Production of exosomes and microvesicles in cells. Microves-
icles are generated from the budding of the plasma membrane (A). 
Exosomes are generated from the inward budding of multi-vesicu-
lar endosomes (MVEs) by the action of multiple proteins (B) and re-
sult in the release of exosomes (C) if the MVE is targeted to the 
plasma membrane instead of the late endosome.
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to mammalian cells.19,51

In humans, EVs can modulate the immune system by present-
ing antigens to antigen presenting cells (APCs) through internal-
ization or fusion, being released by APCs to activate natural killer 
(NK), CD8+ T, and CD4+ T cells, directly activating neutro-
phils, macrophages and NK cells, repressing immune responses 
through CD8+ T cells, NK cells, or myeloid derived suppressor 
cells, and finally by conveying opsonins and complement compo-
nents to modulate phagocytosis and apoptotic cell phagocytosis.52 
These mechanisms are even exploited by some cancer cells by releas-
ing EVs which induce apoptosis of activated T cells.52 During 
human pregnancy, EVs with a distinct population of mRNA 
and miRNA are released from villous trophoblasts in the placenta; 
these EVs also contain FasL and TRAIL which promote apop-
tosis and subsequent immunosuppression of T cells.53,54 These 
EVs are likely utilized by the placenta to help maintain allograft 
tolerance during pregnancy.24

Using vesicles for packaging EVs can reduce the exposure of 
the contents to host proteases and antibodies,48 as well as coupling 
cargo with targeting receptors/agonists without requiring direct 
targeting molecule to cargo interactions. This mechanism of 
packaging hints at the vast potential of therapeutic cargo inside 
of EVs with specific surface markers for the treatment of many 
diseases, such as cancer, where a cargo needs to be delivered to a 
precise tissue or cell type which is otherwise difficult to access  
(Table 1).28

EXTRACELLULAR VESICLES FOR DIAGNOSIS 
AND THERAPEUTICS

EVs in diagnosis

Diagnosing cancer using EVs 

The contents of EVs have been found to be modified in multiple 
different cancers, including colorectal cancer,77 prostate cancer,78,79 
glioblastomas,61,80 and breast cancer,81 as well as many others 
(see Maas et al.82 for review). Multiple patents have already been 
filed to use the contents of EVs for diagnosis (see Urbanelli et 
al.28 for review) so it is likely only a matter of time before EVs 
are used in the clinic for diagnosis.

Remote sensor of inaccessible organs 

The most promising use of EVs is as a remote sensor of or-
gans which are inaccessible to routine monitoring. In patients 
with breast cancer, EVs isolated from the serum contain higher 
levels of glypican 1 (GPC1); in patients with early pancreatic cancer, 

in addition to elevated GPC1, EVs contained mutant transcripts 
of KRAS (KRAS proto-oncogene, GTPase).83 EVs released by 
the placenta during pregnancies and identified in maternal blood 
(and potentially other body fluids, such as urine) will enable clinicians 
to routinely monitor the health of placentation and pregnancy 
throughout gestation without invasive tests.24,53,54,84 There is also 
mounting evidence that EVs package and may spread misfolded 
proteins associated with neurodegenerative diseases, which can 
be detected in CSF and blood, including the scrapie isoform of 
cellular prion protein (PrPsc) that is involved in Creutzfeldt-Jakob 
disease.85 EVs may potentially be useful in the diagnosis and 
progression tracking of similar neurodegenerative diseases.

Typing of infections which are otherwise inaccessible 

Because the releasing of EVs is widely conserved in all three 

Table 1. Tissues, cells, and fluids in which EVs have been identified 
as listed in Vesiclepedia76

Tissue Study

Amniotic fluid Keller et al.36

Aqueous humor Stamer et al.37

Ascites Andre et al.55

Atherosclerotic plaques Mallat et al.56

B cells Miguet et al.57

Breast milk Admyre et al.35

Bronchoalveolar lavage fluid Admyre et al.39

Dendritic cells Admyre et al.39

Embryonic stem cells Yuan et al.58

Endothelial cells Deregibus et al.59

Epididymal fluid Thimon et al.60

Glioblastoma cells Skog et al.61

Inflammatory fluids Fourcade et al.62

Keratinocytes Chavez-Muñoz et al.63

Liver stem cells Collino et al.64

Lung cancer cells Del Tatto et al.65

Macrophages Yang et al.66

Malignant pleural effusions Andre et al.,55 Bard et al.67

Mesenchymal stem cells Collino et al.64

Monocytes Del Conde et al.68

Mononuclear cells Mack et al.69

Placenta Gardiner et al.70

Plasma Del Conde et al.,68 Sabapatha et al.71

Platelets Heijnen et al.72

Red blood cells Fourcade et al.62

Saliva Ogawa et al.,20 Michael et al.31

Seminal fluid Utleg et al.73

Serum Skog et al.61

T cells Martínez-Lorenzo et al.74

Trabecular meshwork cells Stamer et al.37

Tracheobronchial cells Kesimer et al.75

Urine Cheng et al.,21 Keller et al.,36 Stamer et al.37

For the most up-to-date list, see Vesiclepedia,76 EVpedia,17 and Exocarta.37
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domains of life, it is possible that EVs which are present in acces-
sible fluids, such as urine, saliva, or blood, may be of bacterial 
or fungal origins. Sequencing RNA present in EVs may identify 
the infectious agent responsible even though the source tissue is 
diffcult to access, enabling more effective treatment.

Additional potential uses of EVs 

EVs which are introduced from an exogenous source have the 
potential to be used as the therapeutic agent, in much the same 
way as liposomes have been utilized.28,86 Because EVs can be 
generated using simple bioreactors using appropriate engineered 
cell lines coupled with immunoaffnity or other purification,87 
EVs based therapeutics may prove to be more specific, uniform, 
and cheaper to produce than current liposome based technology. 
In theory, any transmembrane receptor or receptor agonist can be 
coupled with any other cargo which is small enough to fit into an EV 
and injected, potentially targeting widespread metastases or lo-
cations which are otherwise inaccessible to targeted therapeutics.28,86

ROADBLOCKS TO FURTHER USE OF 
EXTRACELLULAR VESICLES IN DIAGNOSIS

There are three distinct ways in which isolated EVs can be used 
in diagnosis. The first is a marker-only approach, where the concen-
tration of the marker(s) in EV in the fluid of interest predicts 
disease or phenotype, and no other disease or healthy condition 
is likely to result in elevated concentrations of the marker(s). 
The second is a decomposition-based multi-marker approach, where 
the relative contribution of each tissue to the sub-sample of EVs 
is estimated using tissue-specific markers, and is correlated with 
differences in disease- or phenotype-relevant markers in that 
subsample. The third is a single-EV multi-marker approach, where 
single EV are interrogated to identify their tissue of origin and 
disease- or phenotype-relevant marker concentrations.

EV isolation 

The methods of isolation currently used include ultracentrifu-
gation, density gradient centrifugation, size exclusion through 
membranes, polymeric precipitation, immunoaffinity capture, 
and microfluidics.46,88,89 Ultracentrifugation is an easily executed 
protocol, but also results in the enrichment of proteins with high 
sedimentation rates which are not bound to exosomes, including 
major vault protein, heparan sulfate proteoglycan 2 (HSPG2), 
fatty acid synthase (FASN), and the 26S proteasome.88 Density 
gradient centrifugation reduces the contamination with high 
sedimentation rate protein complexes, but requires additional 

western blotting steps to verify that the density fraction isolated 
contains exosomes and has lower effciency than immunoaffinity 
capture.

Immunoaffinity capture using bead-conjugated antibodies to 
EPCAM or another exosome marker (such as ERBB2, PTPRC, 
or CD63) is simpler than density gradient centrifugation, and 
produces exosomes of high purity, but is limited to exosomal 
populations which express specific surface markers and may 
potentially miss novel exosome populations. Therefore, discovery 
experiments looking for novel populations of exosomes should 
use density gradient centrifugation, whereas established assays 
looking at known exosome populations can use appropriate immu-
noaffinity capture methods. Witwer et al.89 and future recommen-
dations of the International Society for Extracellular Vesicles 
provide valuable recommendations for investigators examining 
EVs in humans.

Normalization of EV content across tissues/samples 

For circulating miRNA, Fesler et al.90 suggests uniform volumes 
of plasma or exogenous sequences and points out that endogenous 
control genes may vary between subjects (as well as in the control 
population).

Identification of tissue of origin 

Because EVs located in body fluids can potentially originate 
from any source tissue for which there is a path to that fluid, 
accurate diagnostics of remote tissues also require identification of 
the tissue of origin of a particular EV or set of EVs. As the miR-
NA and mRNA contents of EVs came from cells in the origi-
nating tissue, miRNA and mRNA which are specific to those 
originating tissue but found within EVs in body fluid indicate that 
at least some of the EVs came from the original tissue. For exam-
ple, the presence of high abundance placenta-specific transcripts 
such as LGALS14 in a sample of EVs would indicate that at least 
some of the EVs came from the placenta. Determining the frac-
tion of EVs which are from a particular tissue of origin would 
allow for changes in miRNA and mRNA abundance over time 
to be assigned to a particular source tissue when multiple samples 
of different per-tissue abundances are obtained at a single time-
point. Marker-free (such as CellCODE91) and/or marker-depen-
dent methods will likely be necessary to determine the proportion 
of exosomes which come from different source tissues in a mixed 
population.

Quantification of a single EV 

In cases where the source tissue has not been assayed, an alterna-
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tive is the (much more diffcult) process of sequencing individual 
EV separately. Presumably, the advances in single-cell and single 
nucleus sequencing will provide the tools for single EV sequencing 
as a side benefit. Previous work by Smith et al.92 using laser 
tweezers Raman spectroscopy that identified the lipid content 
of EVs on a per-EV basis identified multiple exosome subtypes 
which do not correlate strongly with the originating cell type, 
and therefore may represent different exosome subclasses which 
may be present in a single bulk exosome preparation. However, 
Raman spectroscopy is very slow and does not easily enable iden-
tification of the contents of exosomes. In an alternative approach, 
Kibria et al.93 used micro flow cytometry after differential centrif-
ugation to analyze CD44 (CD44 molecule) surface marker inten-
sity on individual exosomes. This overcomes the limitations of 
typical flow cytometers, which can only detect minimum particle 
sizes of 200–500 nm, which is much larger than typical EVs. We 
suspect that the combination of micro flow cytometry with 
droplet based barcoding and sequencing techniques can enable the 
sequencing of the RNA contents of individual EVs in the not-
too-distant future.

CONCLUSION

EVs are poised to fulfill the promise of routine liquid biopsies 
in healthcare, whether used for diagnosing disease, tracking the 
effectiveness of therapy, or providing insight into multiple diseases 
as well as potentially tracking the progress of pregnancies in a 
non-invasive fashion.
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