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Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration 
of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, 
perihilar and not otherwise specified variants according to the location and character of the sclerotic 
lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis 
of podocyte injury has been actively investigated. Several circulating factors affecting podocyte 
permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be 
caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, 
actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of 
onset are different according to the gene involved. Recently, the role of parietal epithelial cells 
(PECs) has been highlighted. Podocytes and PECs have common mesenchymal progenitors, 
therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated 
PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of 
sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from 
minimal change disease. The pathogenesis of FSGS is very complex; however, understanding 
basic mechanisms of podocyte injury is important not only for basic research, but also for daily 
diagnostic pathology practice.
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▒ REVIEW ▒

Focal segmental glomerulosclerosis (FSGS) typically presents 
with nephrotic range proteinuria and, as its name implies, shows 
obliteration or collapse of glomerular capillary loops by increased 
extracellular matrix in some glomeruli only, and the capillary injury 
does not occupy the entire glomerulus involved. In primary FSGS, 
direct podocyte injury is postulated to result in sclerosis. Though 
morphologically similar, secondary FSGS develops due to varying 
injuries, conditions such as obesity, renal mass reduction, drug 
toxicity, viral infection, familial genetic background, hypertension-
related injury, chronic pyelonephritis, or healing of pauciimmune 
necrotizing crescentic injury.

FSGS has heterogeneous morphology (Fig. 1). Several attempts 
have been made to classify FSGS according to the pattern and 
intraglomerular distribution of sclerotic lesions. The Columbia 
Classification proposed in 2004 divides FSGS into collapsing, 
tip, cellular, perihilar, and not otherwise specified (NOS) variants.1 
In collapsing variant of FSGS, glomerular capillary collapse ac-
companied by podocyte hypertrophy and hyperplasia is observed 
in at least one glomerulus. The presence of other variants in the 
remaining glomeruli does not alter the diagnosis. This variant has 
been characterized by its aggressive behavior.2 While collapsing 

FSGS is a histologic feature of human immunodeficiency virus–
associated nephropathy (HIVAN), it has also been related to 
various conditions such as other viral infection (parvovirus B193) 
and drugs (pamidronate,4 interferons,5 and anthracyclin6), or it can 
be idiopathic.7 The tip variant means that the segmental lesion 
involves the outer 25% of the glomerular tuft next to the tubular 
pole, i.e., tip portion, in the absence of collapsing or perihilar 
lesions.1 Tip variant has a favorable prognosis and good response 
to therapy in most series.8 However, contrary reports have also 
been published.9 In the cellular variant, at least one glomerulus 
shows segmental endocapillary hypercellularity, but not in a tip 
location.1 The perihilar variant is diagnosed when more than 
half of the sclerotic glomeruli have sclerosis or hyalinosis in the 
perihilar area.1 In a study on Korean adults, the incidence of each 
subtype was 63.1%, 18.0%, 15.3%, 2.7%, and 0.9% for NOS, 
tip, perihilar, cellular and collapsing variant, respectively.10 In 
Korean children, the incidence was 72.7%, 6.1%, 9.1%, 1.5%, 
and 10.6% for each subtype.11 The low incidence of collapsing 
lesions in adults may partly be associated with the low frequency 
of HIVAN in Asia.12,13
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PATHOGENESIS OF PODOCYTE INJURY

There are several observations indicating that podocyte injury 
is at the center of the development of FSGS. First, podocyte injury 
is the earliest morphologic feature of FSGS. In recurrent FSGS 
in the allograft kidney, podocyte injury is detected by electron 
microscopy prior to the development of overt sclerosis.14-16 Second, 
there are animal models of podocyte-specific injury resulting in 
FSGS. NEP25 mice express human CD25 specifically on podo-
cytes. Injection of immunotoxin which binds to human CD25 
induced podocyte-specific injury and FSGS occurred a few weeks 
later.17 Rats expressing diphtheria toxin receptors on podocytes 
developed FSGS after diphtheria toxin injection.18 Third, histo-
logic appearance of FSGS and clinical symptoms were in pro-
portion with the number of injured podocytes.18 Therefore, the 
pathogenesis of podocyte injury is a key to understand the char-
acteristics of FSGS.

CIRCULATING PERMEABILITY FACTORS

As for the pathophysiology of podocyte injury, several mecha-
nisms have been proposed with supporting evidences. Circulating 
permeability factors have been reckoned as the initiating factor 
of podocyte injury in primary FSGS and its recurrence after 
transplantation. The presence of serum factors that can cause 
podocyte injury was suggested from the therapeutic effect of 
immunoadsorption therapy19 and observations that plasmapheresis 
could decrease the glomerular injury induced by patients’ serum.20 
Further, serum of recurrent FSGS patients significantly increased 
albumin permeability of glomeruli in an in vitro test.21 Among 
the proposed circulating permeability factors, soluble urokinase 
receptor (suPAR) has been most thoroughly investigated. Wei et 
al.22 presented data in a mouse model suggesting that the uroki-
nase receptor of podocytes contributed to podocyte loss and pro-

teinuria. The same group also suggested that suPAR could be 
the cause of FSGS. Serum levels of suPAR were increased in about 
two-thirds of primary FSGS patients and were also associated with 
recurrent FSGS after transplantation.23 They also demonstrated 
that suPAR was increased in two different cohorts of biopsy-
proven FSGS patients. However, suPAR was inversely correlated 
with estimated glomerular filtration rate (eGFR) and treatment 
response.24 Other authors found that plasma suPAR level was 
significantly increased in FSGS patients versus patients with 
minimal change disease, membranous nephropathy, or normal 
control. However, suPAR level was not useful in distinguishing 
primary and secondary FSGS.25 Several contradicting reports on 
suPAR have also been published. Importantly, eGFR affects 
plasma levels of suPAR in patients with non-FSGS glomerular 
lesions, and a suPAR cut off value could not be determined even 
in FSGS patients due to the effect of eGFR.26 Plasma levels of 
suPAR were also increased in lupus nephritis patients compared to 
lupus patients without renal involvement.27 In IgA nephropathy 
patients, the plasma level of suPAR was related to the develop-
ment of secondary segmental sclerosis.28,29 Therefore, whether 
suPAR plays a role in the development of focal segmental lesions 
and its specificity to the primary FSGS are still open to further 
investigation.

Cardiotrophin-like cytokine-1 (CLC-1 or cardiotrophin-like 
cytokine factor 1 [CLCF-1]) is another candidate circulating per-
meability factor for primary FSGS. Savin et al.30 have published 
on a serum factor purified from FSGS patients, which increased 
albumin permeability in isolated rat glomeruli. This factor had 
affinity for galactose and its molecular weight was less than 30 
kDa. They identified this factor as CLC-1 by proteomic analysis 
and also found that the activity of CLC-1 was decreased by several 
factors such as heterodimer formation with cosecreted cytokine 
receptor-like factor 1 (CRLF1), Janus kinase 2 (JAK2) inhibitor, 
and signal transducer and activator of transcription 3 (STAT3) 

Fig. 1. Morphologic variants of focal segmental glomerulosclerosis. (A) Capillary collapse and podocyte hyperplasia are characteristic fea-
tures of the collapsing variant. (B) In the tip variant, segmental lesion involves the glomerular tuft next to the tubular pole. (C) The perihilar 
variant is diagnosed when sclerosis or hyalinosis are present in perihilar lesion in more than half of the sclerotic glomeruli.
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inhibitor.31,32 A phase II clinical trial on therapeutic effect of ga-
lactose in patients with steroid-resistant FSGS was performed 
with inconclusive results due to small sample size.33,34 This study 
design is interesting, considering that CLC-1 has high affinity for 
galactose and the CLC-1–galacotse complex can be easily removed 
in the liver.30

Though known to be related to minimal change disease rather 
than FSGS, angiopoietin-like-4 (Angptl4) is also of interest.35 
Angptl4 has different functions according to its sialylation. While 
proteinuria was induced by hyposialylated Angptl4 located within 
the glomerulus, normosialylated Angptl4 was present in the pe-
ripheral circulation and mediated hypertriglyceridemia,35,36 indi-
cating that these two symptoms of nephrotic syndrome could be 
linked through a common circulating factor.

GENETIC BACKGROUND

FSGS, as a podocytopathy, may be caused by mutation in 
several genes, which are important in maintaining podocyte 
morphology and function. Most of these genes can be categorized 
as those which are related with slit diaphragm structure, actin 
cytoskeleton of podocytes, or podocyte-glomerular basement 
membrane interaction through foot processes.37-39 In addition, a 
specific channel mutation (see below) has also been identified as a 
cause of FSGS (Table 1). Alteration of these genes results in auto-
somal dominant or recessive congenital, infantile, or late onset 
nephrotic syndrome, some of which presents as FSGS histologi-
cally.40 Mutation in the NPHS1 gene and resulting loss of its 
product nephrin, are responsible for congenital nephrotic syndrome 
of Finnish type. The locus of NPHS1 was identified at 19q13.1 
in 1998,41 which was the first identification of a podocytopathy-
related gene. After this discovery, NPHS2,42,43 PLCE1 (phospho-
lipase Cε1, NPHS3),43 WT1 (Wilms tumor 1, NPHS4),44 
LAMB2 (laminin β2, NPHS5),45 PTPRO (protein tyrosine 
phosphatase receptor type O, NPHS6),46 ARHGDIA (Rho 
GDP dissociation inhibitor α, NPHS8),47 ADCK4 (aarF domain 
containing kinase 4, NPHS9),48 and EMP2 (epithelial membrane 
protein 2, NPHS10)49 were identified and related to autosomal 
recessive nephrotic syndrome. Many other genes related to ne-
phrotic syndrome have been identified including ACTN4 (actinin 
α4, FSGS1),50 TRPC6 (transient receptor potential cation channel 
6, FSGS2),51 CD2AP (CD2-associated protein, FSGS3),52 APOL1 
(apolipoprotein L1, FSGS4),53 INF2 (inverted formin, FSGS5),54 
MYO1E (myosin 1E, FSGS6),55 PAX2 (paired box gene 2, 
FSGS7),56 ANLN (anillin, FSGS8),57 and CRB2 (Crumbs homo-
log 2, FSGS9).58 There are interactions of these genes and their 

products. For example, WT1 transcriptionally regulates nephrin 
encoding of NPHS1, therefore, WT1 mutations influence NPHS1 
function.59 A study in a European cohort reported that two thirds 
of nephrotic syndrome within 1 year of life are related to alteration 
of NPHS1, NPHS2, WT1, or LAMB2.60 Another study in a 
non-Finnish ethnic group also reported that NPHS1 and 
NPHS2 mutations were the most common genetic alterations in 
congenital nephrotic syndrome.61 In contrast to these Western 
studies, a genetic analysis of 30 Korean congenital and infantile 
nephrotic syndrome patients revealed that WT1 and NPHS1 
mutations were the most frequent alterations, while NPHS2 
mutations were the lowest frequency genetic alteration.62

PARIETAL EPITHELIAL CELLS 
AND PODOCYTE INJURY

Podocytes are terminally differentiated cells having very limited 
ability of regeneration or proliferation. Therefore, the mechanism 
of repopulation of podocytes after podocyte injury has been of great 
interest. Recently, it has been suggested that parietal epithelial 
cells (PECs) lining Bowman’s capsule play an important role in 
this process by migrating from their original site to replace injured 
podocytes.63 During glomerulogenesis, PECs and podocytes 
originate from common mesenchymal progenitors and finally 
have different phenotypes. Although little is known about the 
function of terminally differentiated PECs, they express tight 
junction molecules such as claudin-1, zonula occludens-1, and 

Table 1. Genes related to FSGS or nephrotic syndrome

Related protein or gene description

NPHS1 Nephrin
NPHS2 Podocin
PLCE1 (NPHS3) Phospholipase Cε1
WT1 (NPHS4) Wilms tumor 1
LAMB2 (NPHS5) Laminin β2
PTPRO (NPHS6) Protein tyrosine phosphatase receptor type O
ARHGDIA (NPHS8) Rho GDP dissociation inhibitor α
ADCK4 (NPHS9) aarF domain containing kinase 4
EMP2 (NPHS10) Epithelial membrane protein 2
ACTN4 (FSGS1) α-Actin-4
TRPC6 (FSGS2) Transient receptor potential cation channel 6
CD2AP (FSGS3) CD2-associated protein
APOL1 (FSGS4) Apolipoprotein L1
INF2 (FSGS5) Inverted formin
MYO1E (FSGS6) Myosin 1E
PAX2 (FSGS7) Paired box gene 2
ANLN (FSGS8) Anillin
CRB2 (FSGS9) Crumbs homolog 2

FSGS, focal segmental glomerulosclerosis.
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occludin and have barrier function against protein.64 Some PECs 
express both CD133 and CD24, which are known to be stem cell 
markers, and these cells have regenerative ability.65 More detailed 
study revealed that PECs show hierarchical differentiation ac-
cording to their locations. PECs located at the urinary pole express 
CD133 and CD24 without the expression of podocyte markers 
(nestin, complement receptor-1, and podocalyxin). PECs of the 
vascular pole express podocyte markers without the expression of 
CD133 or CD24. In other areas, PECs express both CD133/
CD24 and podocyte markers.66 CD133 and CD24-expressing 
PECs have the ability to ameliorate kidney injury by potentiating 
tubular regeneration65 and podocyte replacement, however, they 
can also contribute to glomerular injury such as glomerulosclerosis 
and crescent formation.67,68 Animal models and human post-
transplant biopsies demonstrated that invasion of activated PECs 
through the adhesion sites of the capillary tuft contributed to 
the development of FSGS.69 The adhesion of the glomerular tuft 
to the Bowman’s capsule as a bridge of PEC migration appears to 
occur at early stages of FSGS development.70 Therefore, detecting 
activated PECs on Bowman’s capsule or on the glomerular tuft 
could be an adjunctive diagnostic tool for early FSGS. In support 
of this concept, CD44 as a marker of activated PECs successfully 
distinguished early primary FSGS70 and early post-transplant 
recurrence of FSGS71 from minimal change disease. Interestingly, 
mutation of ARHGDIA, which is responsible for nephrotic syn-
drome, increased migration activity of cultured podocytes.47

CONCLUSION

The etiology and pathogenesis of FSGS are very complex. 
Current research is focusing on the role of podocytes and interac-
tion with PECs. Understanding the mechanism of podocyte injury, 
its progression and possible recovery is important not only for 
basic research but also for daily diagnostic pathology practice.
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